

BEGA

Begin Attachment(s)

19970303_Supp. Subsurface Invest.

SUPPLEMENTAL SUBSURFACE INVESTIGATION 11630-11700 Burke Street Santa Fe Springs, CA 90670

Prepared for:

LARRY PATSOURAS 11700 Burke Street Santa Fe Springs, CA 90670

Project No. 1576

March 3, 1997

ENVIRONMENTAL AUDIT, INC. ®

Planning, Environmental Analyses and Hazardous Substances Management and Remediation

1000-A ORTEGA WAY PLACENTIA, CA 92670-7125 714/632-8521 SUPPLEMENTAL SUBSURFACE INVESTIGATION 11630-11700 Burke Street Santa Fe Springs, CA 90670

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	1
	1.1 SCOPE	1
2.0	SUMMARY OF PREVIOUS INVESTIGATIONS	2
3.0	SUPPLEMENTAL INFORMATION ON SITE HISTORY/USE	3
	3.1 LEGAL DESCRIPTION	4
4.0	NEAR AND ADJACENT PROPERTIES	5
5.0	FIELD WORK	6
	5.1 DRILLING AND SOIL SAMPLING 5.2 MONITORING WELL CONSTRUCTION 5.3 WELL ELEVATIONS 5.4 GROUND WATER SAMPLING 5.5 EQUIPMENT CLEANING PROTOCOL 5.6 EFFLUENT MANAGEMENT	66 7 7 7
6.0	SUBSURFACE CONDITIONS	8
7.0	ANALYTICAL TESTING	9
	7.1 SOIL SAMPLES	ģ
8.0	DISCUSSION	10
	8.1 SOIL SAMPLES ANALYZED FOR ARSENIC 8.2 SOIL SAMPLE ANALYZED FOR TITLE 22 METALS 8.3 SOIL SAMPLE ANALYZED FOR TRPH, SVOCS AND PCBS 8.4 GROUND WATER SAMPLE ANALYZED FOR VOCS 8.5 GROUND WATER SAMPLE ANALYZED FOR	10 10 10
	TITLE 22 METALS	11
	8.5.1 FILTERED SAMPLES	11 11
9.0	CONCLUSIONS AND RECOMMENDATIONS	12
	9.1 SOIL CONTAMINATION. 9.2 GROUND WATER	12 12

	CA 90670
TABLE O	F CONTENTS
10.0 LIM	ITATION
11.0 REF	ERENCES CITED
TABLES:	
TABLE 1: TABLE 2:	GROUND WATER ELEVATIONS ANALYTICAL TESTING RESULTS FOR SOIL SAMPLES COLLECTED ON DECEMBER 23, 1996
TABLE 3:	ANALYTICAL TESTING RESULTS OF GROUND WATER SAMPLES COLLECTED ON JANUARY 13, 1997
TABLE 4: FIGURES:	HISTORICAL RESULTS MW-03, PHIBRO-TECH, INC.
FIGURE 1: FIGURE 2: FIGURE 3:	SITE PLAN
APPENDIC	CES
APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX	B: MONITORING WELL PERMIT C: GRAPHIC GEOTECHNICAL BORING LOG CHAIN OF CUSTODY RECORDS AND LABORATORY REPORT MONITORING WELL CONSTRUCTION DETAILS
EHL:WORD:1576RPT2	
	i I

SUPPLEMENTAL SUBSURFACE INVESTIGATION
11630-11700 Burke Street
Santa Fe Springs, CA 90670

1.0 INTRODUCTION

This report presents the results of a supplemental subsurface investigation conducted at the property identified as 11630-11700 Burke Street, Santa Fe Springs, California (Site) (see Figure 1). Environmental Audit, Inc. (EAI) was retained by Mr. Larry Patsouras, the current property owner, to complete a supplemental subsurface investigation to provide additional information on chemicals present in soil and ground water beneath the Site. Site investigation activities are being overseen by the County of Los Angeles Fire Department, Health Hazardous Materials Division (County Fire).

On January 25, 1996, County Fire issued a letter to Mr. Patsouras requesting that additional assessment activities and information on Site history be provided for the property. County Fire's request was based on their review of the EAI report entitled "Subsurface Investigation Report, 11630-11700 Burke Street, Santa Fe Springs, California 90670," dated December 18, 1995 (see EAI, 1995).

On February 21, 1996, a meeting was held at the Site between representatives of County Fire and Mr. Patsouras. The purpose of the meeting was to discuss the scope of the supplemental subsurface investigation and establish the locations for additional sampling. Based on the results of the meeting, EAI prepared a Work Plan for the Supplemental Subsurface Investigation (Work Plan), dated February 29, 1996 (see EAI, 1996), and an addendum to the Work Plan dated March 29, 1996. County Fire approved the Work Plan and addendum on April 2, 1996 (see Appendix A). Additionally, the direction of ground water flow was in part determined by the use of an off-site ground water monitoring well located on the adjacent Phibro-Tech property. Use of the subject well for Site related environmental actions was approved in County Fire correspondence dated October 22, 1996 (see Appendix A).

1.1 SCOPE

The scope of the investigation consisted of the following:

- Collecting five near surface soil samples for metals, hydrocarbons and/or polychlorinated biphenyls (PCBs) testing.
- Constructing one 55-foot deep ground water monitoring well (well MW-2).
- Obtaining depth to ground water measurements for the two wells located on the Site (wells MW-1 and MW-2) and a well located on the adjacent Phibro-Tech property (Phibro-Tech well MW-03).
- Establishing elevations for the two Site wells based on the established elevation for Phibro-Ţech well MW-03.
- Collecting and testing ground water samples from the two Site wells.
- Preparation of a report presenting the findings of the investigation.

SUPPLEMENTAL SUBSURFACE INVESTIGATION 11630-11700 Burke Street Santa Fe Springs, CA 90670

2.0 SUMMARY OF PREVIOUS INVESTIGATIONS

In June 1994, AIG Consultants, Inc. (AIG) conducted a Phase I Environmental Site Assessment of the Site. The Site at that time was owned by Mr. William Palley. The Site is divided into two parcels, i.e., a west parcel and an east parcel. The west parcel was occupied by Talco Plastics, Inc. (Talco) and the east parcel contained a warehouse that was vacant (see Figure 2). The purpose of the assessment was to identify any known or potential environmental problems at the Site. Based upon their investigation, AIG concluded that there was evidence of past activity at the Site which may represent environmental risks and/or liabilities. AIG recommended that additional investigation be performed to further evaluate the potential for impact to the environment (see AIG, 1994).

In August 1994, Professional Service Industries, Inc. (PSII) drilled and sampled eight borings (B-1 through B-8) and hand augered four borings (HA-1 through HA-4) at the Site (see Figure 2). The borings ranged in depth between 4.5 and 35 feet below ground surface (bgs). Total petroleum hydrocarbons (TPH), volatile organic compounds (VOCs) and metals were detected in soil samples collected and tested from the Site by PSII (see PSII, 1994).

In November 1994, EAI was retained on behalf of Mr. Patsouras to conduct a subsurface investigation of the Site. At that time, Mr. Patsouras was interested in purchasing the Site. The purpose of the subsurface investigation was to attempt to define the extent of soil contamination encountered at the Site by PSII, and to determine whether ground water had been impacted. Based on the information contained in the AIG and PSII reports and EAI's walk-through inspection of the Site, the following areas of the Site were targeted by EAI for subsurface investigation (see Figure 2):

WEST PARCEL - Underground Storage Tanks (USTs)
Clarifiers (Historical Paint/Steam Cleaning Area)
Mechanical Pit
Maintenance Shop

EAST PARCEL - Storage Shed
Abandoned Clarifiers (filled with concrete)
Historical Stained Area

Between November and December 1994, EAI advanced 17 borings on the Site. The results of this work coupled with the analytical data available from the PSII work indicated that impacted soil (i.e., soil containing hydrocarbons at concentrations which regulatory agencies typically require remediation) was limited to the storage shed and abandoned clarifiers associated with the East Parcel (see Figure 2 and EAI, 1995). Further, these data indicated that assessment of ground water quality was required pursuant to regulatory guidelines since contaminants were detected within 15 feet of the suspected depth to ground water.

In October 1995, EAI installed one ground water monitoring well (well MW-1) on the Site (see Figure 2). Since hydrocarbons were detected in the ground water sample collected from well M-1, EAI recommended additional ground water assessment activities (see EAI, 1995).

SUPPLEMENTAL SUBSURFACE INVESTIGATION
11630-11700 Burke Street
Santa Fe Springs, CA 90670

3.0 SUPPLEMENTAL INFORMATION ON SITE HISTORY/USE

The Site includes approximately 8.5 acres containing several buildings located in a mixed urban area neighborhood, i.e., residential, commercial and industrial land uses. In the early to mid 1970's, the Site was reportedly divided into an east and west parcel. Currently, the east parcel contains a single building occupied by the present property owner. This building is used to warehouse and distribute food products. The west parcel is presently occupied by Talco.

The building on the east parcel was previously occupied by Max Rouse & Sons, Inc., industrial auctioneers, beginning in 1981 and by Master Box and Paper Company beginning in 1987. Talco has leased the west parcel since 1983. Palley Supply Company (Palley), a government surplus order house, occupied the Site beginning in 1973. Globe International, Inc. (Globe), a manufacturer of oil well drilling equipment and tools, occupied the Site beginning in 1958.

In 1970, Globe received a Notice of Violation (NOV) from the Los Angeles County Engineer for discharging of liquid waste to the ground surface. An analysis of the waste discharged indicated high levels of dissolved solids. The waste was the result of steam cleaning and degreasing operations of steel parts prior to painting. Oil and grease in the wastewater were not analyzed at that time. Subsequently, Globe installed a waste disposal system in which liquid waste flowed out into the sewer after passing through two three-compartment interceptors/clarifiers. Solid sedimentary waste products consisting of chemicals, grease, sand and steel scales estimated at 15-20 cubic feet per month was reportedly pumped from the interceptors/clarifiers and disposed of by private vendors.

In 1978, Palley received a NOV from the City of Santa Fe Springs for discharge of industrial wastewater to the public sewer system. Palley, who was engaged in hydraulic equipment maintenance, was discharging industrial waste from a steam cleaning operation through one or both of the interceptors/clarifiers described above, to the sanitary sewer.

In 1987, the County of Los Angeles Department of Health Services requested a criminal complaint to be filed by the District Attorney's office against Palley. The complaint was associated with the presence of the two subsurface structures (interceptors/clarifiers) consisting of three compartments and each compartment containing a black oily liquid resembling waste oil. Palley ceased operations in 1987.

In 1988, following overflow of the abandoned clarifiers onto the east parcel of the Site during a rain storm, the City of Santa Fe Springs Fire Department directed Mr. Palley, the then property owner, to properly dispose of the hazardous waste contained in the two clarifiers and the approximately twenty 55-gallon drums also containing hazardous waste located directly adjacent to the clarifiers. Records indicated that 3,500 gallons of hazardous waste liquid were removed from the Site on November 15, 1988. The clarifiers were reportedly subsequently abandoned by filling the clarifiers with concrete. EAI was unable to locate any permits issued for installation or abandonment of the clarifiers.

Talco, the current tenant occupying the west parcel of the Site, is a reprocessor of plastic resin. Plastic scrap is purchased from producers of various manufactured plastic products.

_		r.			
	SUPPLEMENTAL SUP	BSURFACE INVESTIGATI	ION .		
	Santa Fe Springs, CA				
	presently uses a	nd/stores a variety	of hazardous or regi	for reuse by the same ulated materials on Sit	e. These include
	gasoline, diesel	fuel, liquid propa	ane gas, acetylene, o	oxygen, waste oil, luintained on Site (see AI	bricating oil, and
٦	3.1 LEGAL	DESCRIPTION			•
ا ا	Map Book 8168 tract in the Ran	8, Page 1, Parcel 8 cho Santa Gentrud	 The legal descripter of the second community 	tice of Assessor, as Astion of the Site is as faction of SE line of But	follows: "Colima rke St. w/NE line
al .			De Polloreno 371 A	30"W 509.79' th SE a: C Allot."	na ronowing bary
		• 1 · · · · · · · · · · · · · · · · · ·			
		1 P			
		4 1 *			
7		?			
		: : :			
7		· · · · · · · · · · · · · · · · · · ·			
					
]		: :			
ר	•	6			
]		:			
7		· · · · · · · · · · · · · · · · · · ·		•	
-		1			
]					
7		· · · · · · · · · · · · · · · · · · ·		•	
_1 		; ;			
]					
7					
J		<u>;</u> ;			
]					
_		\ :			

	ATAIN A SUPPLIER OF INVESTIGATION
	MENTAL SUBSURFACE INVESTIGATION 700 Burke Street
Santa Fe	Springs, CA 90670
	•
4.0	NEAR AND ADJACENT PROPERTIES
investi	nation in regulatory agency files indicate that soil and ground water contaminat gations have been conducted at properties adjacent to and near the Site. Repote that ground water monitoring wells have been installed at (see Figure 2):
-	Pilot Chemical Company, 11756 Burke Street, Santa Fe Springs. This site is local east and immediately adjacent to the Site. Ten monitoring wells and one extract well are reportedly present at this site. The depth to ground water beneath this site. November 1994 ranged from 38 to 42 feet bgs with a southwest ground water findirection.
-	Phibro-Tech, Inc. (formerly Southern California Chemical Company), 8851 D. Road, Santa Fe Springs. This site is located south and immediately adjacent to Site. Twenty-four wells are reportedly located on this site. Thirteen monitoring we and one extraction well are currently in use.
-	Techni-Braze, Inc., 11845 Burke Street, Santa Fe Springs. This site is local northeast of the Site. Four monitoring wells are reportedly present at this site.
metals (1,1-D tetrach	been reported that contaminants in the ground water at the above sites have include, e.g., cadmium and chromium, and organic compounds including 1,1-dichloroeth DCA), 1,1-dichloroethylene (1,1-DCE), 1,2-dichloroethane (1,2-DCA), benzene, car alloride, chloroform, ethylbenzene, trichloroethylene (TCE), tetrachloroethylene (PCe, xylenes and methylene chloride.
	3

SUPPLEMENTAL SUBSURFACE INVESTIGATION 11630-11700 Burke Street Santa Fe Springs, CA 90670

5.0 FIELD WORK

5.1 DRILLING AND SOIL SAMPLING

On December 23, 1996, one ground water well (well MW-2) was constructed on the Site (see Figure 2). Appendix B contains a copy of the Los Angeles County Department of Health Services permit issued for construction of the well.

The well was drilled by Cascade Drilling, Inc. of Norwalk, California (License No. 717510; C-57 Water Well Drilling), under the supervision of an EAI California registered geologist. The well was drilled using 8-inch outside diameter continuous flight hollow stem augers to a depth of approximately 55 feet bgs. The well was logged in accordance with the Unified Soil Classification System (see Appendix C).

Soil samples were collected at five feet bgs and at approximately five-foot intervals thereafter until termination. Soil samples were collected using a 2-inch diameter by 18-inch long split-spoon drive sampler employed in advance of the augers. Samples were retrieved and examined for lithology identification purposes only, i.e., soil samples from the well were not retained for analytical testing.

Soil samples were obtained from five additional locations (SS-1, S-2, S-3, SS-4 and SS-5) on the Site (see Figure 2). These soil samples were obtained from depths ranging from three inches to two feet bgs (see Section 7.1). The soil samples were obtained at each location, note using a hand trowel, and placed in a screwed top 8-ounce glass jar and capped with a Teflon lined lid. The samples were labeled with the sample point identification, depth interval, time and date, and EAI project number. Each sample was individually sealed in a "Ziploc" plastic bag, and immediately placed into an ice chest chilled using frozen blue ice. The samples were kept chilled until delivered to the laboratory for analytical testing. All samples were logged on a chain-of-custody record form (see Appendix D).

5.2 MONITORING WELL CONSTRUCTION

Well MW-2 was constructed of two-inch inside diameter flush threaded Schedule 40 polyvinyl chloride well casing. All well casing materials were steam cleaned prior to installation. The well was designed with a slotted section (0.02-inch x 1.5-inch slots) which extends approximately 20 feet below the water table and 5 feet above. The annular space between the borehole wall and well casing was backfilled with grade #3 Monterey sand to approximately two feet above the slotted section. A surge block was used to settle the filter pack prior to placement of the bentonite seal. An approximately three foot layer of hydrated bentonite chips was placed on top of the sand pack followed by a cement/bentonite slurry to within three feet of the surface. The remaining annual space was grouted to the surface using cement. A flush mounted traffic grate was placed on the well and was set to prevent sheet flow from entering the well head. Appendix E contains the specific well construction details.

_	• 1
7	SUPPLEMENTAL SUBSURFACE INVESTIGATION 11630-11700 Burke Street
	Santa Fe Springs, CA 90670
,	
	5.3 WELL ELEVATIONS
]	On January 13, 1997, EAI staff (under the supervision of an EAI California registered civil engineer) established elevations for Site wells MW-1 and MW-2 based on the established elevation for Phibro-Tech well MW-03 (151.71 feet above mean sea level [MSL]) (see Table 1).
j	5.4 GROUND WATER SAMPLING
]	On January 13, 1997, prior to purging activities, depth measurements to fluid levels were recorded for the two Site wells and Phibro-Tech well MW-03 using an interface probe accurate to 0.01 foot (see Table 1). Prior to sampling the two Site wells, the wells were purged using a Grundfos MP1 submersible pump. Temperature, conductivity, pH and turbidity readings were
i	recorded during purging (see Appendix F).
	Ground water samples were obtained from just below the water surface using disposable Voss Technologies' bottom bailers equipped with VOC sampling tips. Use of these bailers precludes the potential for cross-contamination. The samples from each well were sealed in two 40-milliliter (ml) volatile organic analysis (VOA) vials and two plastic bottles which
]	contained the appropriate sample preservatives as prepared by the laboratory. Each vial was completely filled so that no head space existed between the sample and the lids. The samples were labeled, handled and transported as described in Section 5.1.
	5.5 EQUIPMENT CLEANING PROTOCOL
]	The augers were steam cleaned before drilling the well. The hand trowel used to obtain the soil samples was decontaminated between each sampling using the following procedure:
]	 All excess soil was scraped off the trowel. The trowel was washed in a solution of Alconox detergent and tap water. The trowel was rinsed with tap water.
]	The submersible pump and hose system (Equipment) only used to purge the wells prior to sampling, was decontaminated using the following procedure:
	 The Equipment was flushed using a solution of Alconox detergent and tap water. The Equipment was flushed with tap water.
1	5.6 EFFLUENT MANAGEMENT
]	All effluent generated during sampling and equipment decontamination activities was sealed in labeled 55-gallon drums. The drums remained on the Site pending the results of the analytical testing, at which time the appropriate disposal method was determined. Manifests will be maintained by the property owner documenting disposal of the waste.
1	
]	
7	

SUPPLEMENTAL SI 11630-11700 Burke S Santa Fe Springs, CA	
CO CYPRO	TOPE A CIP CONDITIONS
6.0 SUBS	URFACE CONDITIONS
	e conditions encountered in the soil borings are presented in Appendix C. The generalized summary of the soil stratigraphy encountered.
inches bgs (e. pavement, a rapproximately approximately approximately approximately approximately	g location, the soil was covered with asphalt to a depth of approximately three except soil sample SS-5 which was located in a grassy area). Beneath the usty, dry to slightly moist, slightly sandy silt was encountered to a depth of seven feet bgs. Beneath the silt, a very silty sand was encountered to 12 feet bgs which graded into a tan, medium to fine grained sand to a depth of 29 feet bgs. A tan to rust, clayey silt was then encountered to a depth of 33 feet bgs followed by a silty sand grading into a sand at a depth of 43 feet bgs sandy clayey silt was then encounter to the maximum depth investigated of 5
Ground water feet bgs.	was encountered during the drilling operation at a depth of approximately 3
	6W @ W35'

	TAL SUBSURFACE INVESTIGAT	TION	
11630-11700 Santa Fe Sori	Burke Street ngs, CA 90670		
ouna re op	1,55, 6.1.		
	•		
7.0 A	NALYTICAL TEST	TING	
of Califo	tical testing was comple ornia certified hazardous d as part of this investiga	s waste testing laborato	onmental Laboratories (CEL), a state bry. CEL is certified for all tests
7.1 S	OIL SAMPLES		
were sele 418.1, se arsenic b	ectively tested for total re mi-volatile organic com	coverable petroleum hydoounds (SVOCs) by EPA	from the five near surface borings trocarbons (TRPHs) by EPA Method Method 8270, PCBs by EPA 8080, EPA Methods 6010 and 7471. The
	Sample No.	Depth bgs	Analytical Test(s)
	SS-1 S-2 S-3	3 inches 3 inches 3 inches	Arsenic Title 22 Metals Arsenic
	SS-4 SS-5	2 feet 1-2 feet	TRPH, SVOCs, PCBs Arsenic (background)
The resu		nown in Table 2. The	laboratory reports are contained in
7.2 G	ROUND WATER SAM	PLES	
by EPA and unfil	Methods 200.7 and 245	.1. Note, the metals te was completed by CEL.	A Method 524.2, and Title 22 metals sting was conducted on both filtered. The results of the testing are shown adix D.
	: !		
	1		
	•		
•			
	•		
		•	
٠	1		

Santa Fe	e Springs, CA 90670
8.0	DISCUSSION
	•
8.1	SOIL SAMPLES ANALYZED FOR ARSENIC
	amples SS-1, S-3 and SS-5 (background) were analytically tested for arsenic. No arseletected in these samples (see Table 2).
8.2	SOIL SAMPLE ANALYZED FOR TITLE 22 METALS
this sa	cample S-2 was analytically tested for Title 22 metals. Several metals were detected ample at concentrations ranging between approximately 2 parts per million (ppm) and (see Table 2).
of me Limit specif	22, California Code of Regulations contains standards for total and soluble concentral talls which, if exceeded, renders a waste hazardous. One standard is the Total Threst Concentration (TTLC). This standard is used when considering the total amount fic metal, e.g., arsenic in a given sample. No metals were detected in sample Sentrations equal to or greater than their TTLC standards.
standa an ac WET equal	other Title 22 standard is the Soluble Threshold Limit Concentration (STLC). and is used when considering the amount of a specific metal that is extractable/solubid solution as determined by the Waste Extraction Test (WET) method. Normally is only conducted if the total sample concentration (i.e., the TTLC concentration to or greater than ten times the STLC standard. No total metals were detected entrations equal to or greater than ten times their STLC standards.
8.3	SOIL SAMPLE ANALYZED FOR TRPH, SVOCs AND PCBs
	sample SS-4 was analytically tested for TRPH, SVOCs and PCBs. No SVOCs or I detected (see Table 2).
sampi identi carbo	H was detected at a concentration of 7,530 ppm (see Table 2). Based on this results, le SS-4 also was analytically tested by EPA Method 8015M for carbon of fication. Results indicate the no petroleum hydrocarbons were detected in the C_7 to an ranges and that the lightest concentration started in the C_{15} range (see Appendix e data indicated that the hydrocarbons present are heavy ends.
8.4	GROUND WATER SAMPLES ANALYZED FOR VOCs
MW-follow	ral VOCs were detected in the ground water samples collected from wells MW-12, e.g., 1,1-DCE, 1,1-DCA, chloroform, TCE, PCE, toluene and xylenes. wing VOCs were detected at concentrations equal to or greater than their respective as for drinking water: 1,1-DCE, carbon tetrachloride, 1,2-DCA, TCE and PCE (see Total Concentrations)

SUPPLEMENTAL SUBSURFACE INVESTIGATION		
Santa Fe Springs, CA 90670		
8.5 GROUND WATER SAMPLES ANALYZ	ZED FOR TITLE 22 METALS	
8.5.1 <u>Filtered Samples</u>		
No metals were detected in the filtered ground w MW-2 (see Table 3).	vater samples collected from wells MW-1 and	
8.5.2 <u>Unfiltered Samples</u>		
1 and MW-2. However, only chromium was	detected at a concentration greater than its	
: - -		
ř		
		•
•		
;		
	8.5 GROUND WATER SAMPLES ANALYZ 8.5.1 Filtered Samples No metals were detected in the filtered ground v MW-2 (see Table 3). 8.5.2 Unfiltered Samples Several metals were detected in the unfiltered ground MW-2. However, only chromium was established action level for drinking water (see Table 3).	8.5 GROUND WATER SAMPLES ANALYZED FOR TITLE 22 METALS 8.5.1 Filtered Samples No metals were detected in the filtered ground water samples collected from wells MW-1 and MW-2 (see Table 3). 8.5.2 Unfiltered Samples Several metals were detected in the unfiltered ground water samples collected from wells MW-1 and MW-2. However, only chromium was detected at a concentration greater than its established action level for drinking water (see Table 3).

		. *	
SUPPLEMENT 11630-11700 B	AL SUBSURFACE INVESTIGATION		
Santa Fe Spring			
9.0 CC	ONCLUSIONS AND RECOMMENDATIONS	}	
9.1 SO	IL CONTAMINATION		
(unsaturate abandoned that a plan abandoned (including proposed r	ts of this and previous field investigations indicated zone) is confined to localized areas at the storage clarifier located on the East Parcel of the Site (see Fa be prepared to remediate the impacted soils at the storage clarifier. The remedial action plan (RAP) should projustification for the cleanup levels), evaluate possible remedial option. The Plan should be submitted to Comprior to implementation.	ge shed and northern Figure 2). EAI recommorage shed and northern ovide proposed cleanup remedial options, and se	most mends i most levels elect a
9.2 GR	OUND WATER		
	to water beneath the Site is approximately 35 feet bgs a		
chlorinated PCE and r properties. impacted identified	westerly flow direction. Metals, e.g., cadmium a hydrocarbons, e.g., 1,1-DCA, 1,1-DCE, 1,2-DCA, methylene chloride are known to be present in ground w. The results contained and/or referenced herein in (contaminated) on a regional basis. However, the by the storage shed and northern most abandoned clarify represents a potential source for additional impact to gr	, carbon tetrachloride, vater beneath several ad adicate that ground was on-site soil contaminate located on the East	TCE, ljacent is nation
0. 2.0	Flows W-SW direction		
	!		
	•	-	
	1		
	:		
	•		
•			
	<i>f</i>		

	ITAL SUBSURFACE INVESTIGATION
11630-11700 l Santa Fe Sprir	Burke Street
10.0 L	IMITATION
exercised,	essional services have been performed using that degree of care and skill ordinarily, under similar circumstances, by reputable environmental consultants practicing in
conclusion referenced	imilar localities. This report has been prepared for Mr. Larry Patsouras. The ns and recommendations included in this report are based on information contained of the description of th
Respectfu	ally submitted,
ENVIRO:	NMENTAL AUDIT, INC. PROFESSIO
Thou	uddom culd a Edward H. LEONHARDT
	H. Leonhardt, RCE, REA Civil Engineering C.E. 24274 12/31/97 CIVIL
Dter	sen A. Bright sh Prof CALIFORNIA
	. Bright, REP, REA

11630-11700 Burke S Santa Fe Springs, CA	
11.0 REFE	ERENCES CITED
	nt, Inc., "Phase I Environmental Site Assessment, Industrial Buildings, Burke Street, Santa Fe Springs, California 90670," dated June 30, 1994
	Service Industries, Inc., "Phase II Preliminary Contamination Asses 11700 Burke Street, Santa Fe Springs, California," dated August 18, 1994).
Environmental Santa F	Audit, Inc., "Subsurface Investigation Report, 11630-11700 Burke Fe Springs, CA 90670," dated December 18, 1995 (EAI, 1995).
Environmental 11700 1996).	Audit, Inc., "Work Plan for Supplemental Subsurface Investigation, Burke Street, Santa Fe Springs, CA 90670," dated February 29, 1996
EHL:WORD:1576RPT2	
•	

TABLES		i,	·	

.

	•	TABLE 1			
	GI	ROUND WATER EI	LEVATIONS		
		,			Pa
DATE	ELEVATION OF TOP SURFACE OF PVC WELL CASING (FEET MSL)	MEASURED DEPTH TO GROUND WATER (FEET bgs)	MEASURED DEPTH TO PRODUCT	PRODUCT THICKNESS	G ELEV (FEE
MW-1	152.83				
10-05-95 01-13-97		35.83 ⁽¹⁾ 38.33 ⁽¹⁾	-	0 0	
MW-2	149.66				
01-13-97		32.14 ⁽¹⁾	-	0	
MW-03	151.71				
01-13-97	:	37.52 ⁽²⁾	-	0	
NOTES:	1				
(2) Depth	to water is as measured from the to water is as measured from the sea level ground surface	ne top of PVC well casing. ne top of traffic cover (Phibro-T	ech).		
EHL:WORD:1576T1					
	a				

				E INVESTIGATI	ON			
		11700 Burk e Springs,	e Street CA 90670					
			ANIATI	vricai m	TABLE		I CAMDIEC	
			ANAL			LTS FOR SOIL CEMBER 23, 19		
П					Parts per Millio	on (ppm)		Page 1 of 1
	SAMI	PLES I.D). #	<u>TRPH</u>	<u>SVOCs</u>	<u>PCBs</u>	<u>Arsenic</u>	Title 22 <u>Metals</u>
		SS-1	Deoth 3-4"	NA	NA:	NA	ND	NA
П		S-2	3-411	NA	NA	NA	NA	(1)
		S-3	3-4"	NA	NA	NA	ND	NA
Π		SS-4	2411	7,530	ND	ŊD	NA	NA
0		SS-5	15-18"	NA	NA	NA	ND	NA
	NOTE: NA ND	Not analy		atory reportable l	imit.			
	(1)	Concentra	ation (STLC) V	alues.	otal Threshold Limit Co	ncentration (TTLC) and	l/or 10 x Soluble Thresh	old Limit
٠		Me	tals detected (p \(Barium	pm): 77.3				
			Cadmium	1.9				
ت			Chromium Cobalt	12.8				
П			Copper	13.5			•	
اتا			Nickel Vanadium	6.0 24.7				
П			Zinc No other m	27.0 etals were detecte	d above the laboratory	reportable limit.		
L						•		
	EHL:WO	RD:1576T2						
						,		

12 Pept 4
3/3/97

TABLE 3

ANALYTICAL TESTING RESULTS FOR GROUND WATER SAMPLES COLLECTED ON JANUARY 13, 1997

Parts per Billion

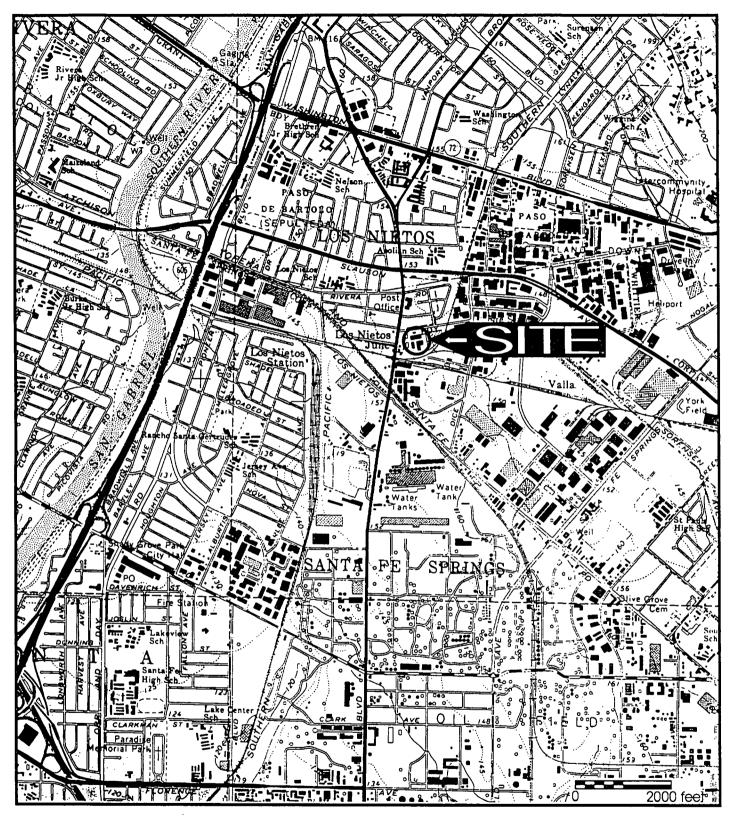
Page 1 of 1

ANALYTE	MW-1	MW-2	ACTION LEVEL (a)
METALS (b)		-appear	uppradient
Filtered Sample:	ND	ND	- Coperacus
Unfiltered Sample:			
Barium	520	440	1000
Chromium	<u>(80</u>)	<u>90</u>	50
Cobalt	<:30	40	NS
Copper	70	80	1000*
Nickel	<40	50	NS
Vanadium	130	140	NS
Zinc	150	190	5000*
HYDROCARBONS (c)		
1,1-Dichloroethene	4.3	<u>33.2</u>	6.—
1,1-Dichloroethane	< 0.5	1.3	5.—
Chloroform	4.5	1.5	100·
1,1,1-Trichloroethane	1.3	7.9	200
Carbon Tetrachloride	(1.1)	< 0.5	0.5
1,2-Dichloroethane	0.5	< 0.5	0.5
Trichloroethene	11.4	<u>14.5</u>	5 ⊷
Toluene	1.9	< 0.5	100,
Tetrachloroethene	(93)	<u> 296</u>	5 -
Total Xylenes	2.7	<1.0	1750,
·			

NOTES:

- ND Not detected above the laboratory reportable limit.
- (a) California primary or secondary maximum contaminant level (MCL) for drinking water. Primary MCL listed unless otherwise indicated.
- (b) Sample was tested for Title 22 metals by EPA Methods 200.7 and 245.1. Only the metals detected are listed on this table. See Appendix D for laboratory reports.
- (c) Sample was tested for hydrocarbons by EPA Method 524.2. Only the hydrocarbons detected are listed on this table. See Appendix D for laboratory reports.
- * Secondary MCL.
- 33.2 = concentration equal to or above action level.

EHL:WORD: 1576T3


TABLE 4 HISTORICAL RESULTS MW-03 PHIBRO-TECH, INC.

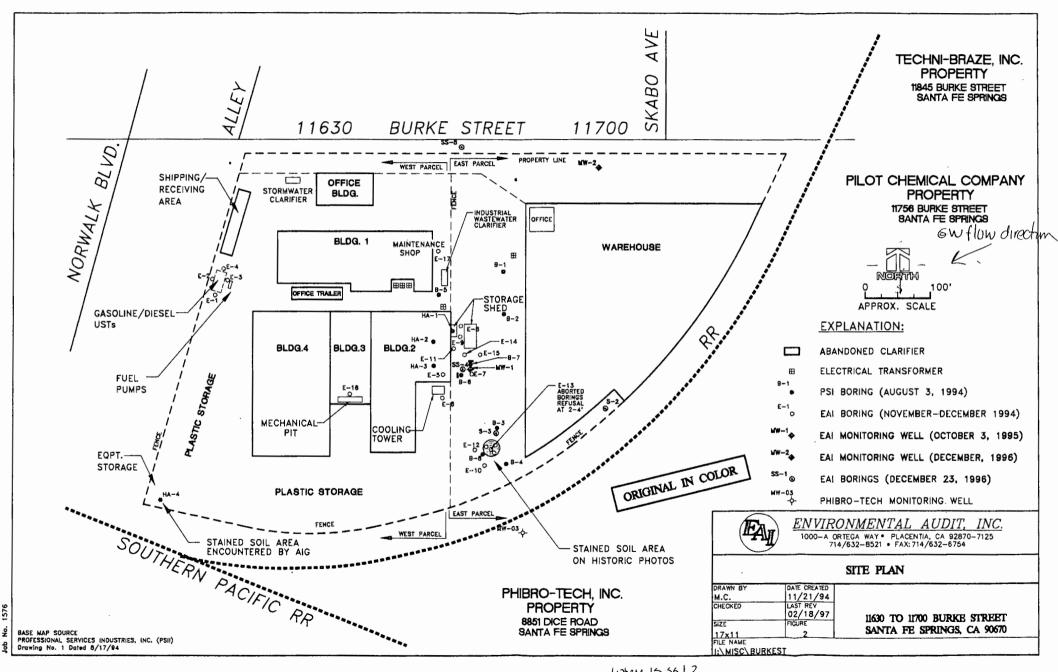
	T			× ====		-		PURGEA	BLE	
		METALS			AROMATICS				HALOCARBONS	
Monitor	Groundwater	Hexavalent	Total	Cadmium	Copper	Benzene	Toluene	Ethyl-	Total	Trichloroethene
Well	Elevation	Chromium	Chromium					Benzene	Xylenes	
No./Date	(Feet MSL)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW-03					-		-			
Jan-89	95.02	< 0.01	< 0.014	< 0.003	< 0.009	7.4	17	\4,900	1,500	74
Apr-89	99.29	<0.05	0.07	< 0.01	<0.02	<50	<50	1,200	60	110
Jul-89	98.21	< 0.05	0.08	<0.01	< 0.02	<7	<10	10	<10	120
Oct-89	94.75	<0.05	<0.02	<0.01	<0.05	<50	<100	1,600	150	<100
Jan-90	95.98	< 0.02	<0.01	<0.01	<0.02	<5	<5	110	<10	65
Apr-90	97.72	<0.02	<0.01	<0.005	<0.02	<50	<50	2,100	720	74
Jul-90	99.27	<0.02	<0.01	< 0.01	<0.02	<5	<5	<5	<10	130
Oct-90	97.29	<0.02	< 0.01	< 0.005	<0.02	9	2	<1	<1	130
Jan-91	97.69	<0.02	<0.01	<0.005	<0.02	<0.5	<1	<1	<1	38
Apr-91	99.81	< 0.02	<0.01	<0.005	< 0.02	<0.5	<1	<1	<1	27
Jul-91	101.63	<0.02	<0.01	< 0.005	<0.02	<0.5	<1	<1	<1	28
Oct-91	100.99	< 0.02	< 0.01	< 0.005	0.03	<0.5	<1	<1	<1	71
Jan-92	103.44	<0.05	<0.0081	< 0.0027	0.02	<1	<1	<1	4	76
Apr-92	105.04	< 0.02	<0.02	< 0.005	< 0.02	<0.5	<1	<1	<0.5	25
Jul-92	106.61	<0.02	0.02	<0.005	0.13	<0.5	<1	<1	<1	76
Oct-92	103.93	< 0.02	< 0.02	<0.005	0.038	0.52	<1	<1	<1	130
Jan-93	107.28	<0.02	<0.01	<0.005	0.096	<2.5	<5	<5	<5	84
Apr-93	115.17	< 0.02	< 0.01	< 0.005	< 0.02	<0.5	<1	<1	<1	12
Jul-93	115.92	< 0.02	< 0.01	<0.005	<0.02	<0.5	3.3	2.6	5.9	16
Oct-93	115.67	<0.02	< 0.01	< 0.005	< 0.02	<0.5	<1	2.6	4.8	17
Jan-94	115.69	< 0.02	< 0.01	<0.005	<0.02	<0.5	<1	<1	<1	10
Apr-94	116.33	< 0.02	<0.01	<0.005	<0.02	<0.5	<1	<1	<1	15
Jul-94	116.91	<0.02	< 0.01	<0.005	<0.02	<0.5	<1	<1	<1	26
Oct-94	110.85	< 0.02	<0.01	<0.005	<0.02	1.2	3.5	1.5	12	76
Jan-95	111.83	<0.02	<0.01	<0.005	<0.02	<0.5	<1	. <1	<1	72
Apr-95	117.83	< 0.02	0.0023	< 0.001	<0.02	<0.5	<1	1.3	<1	57
Jul-95	119.20	<0.02	<0.01	<0.005	<0.02	<0.5	2.0	5.2	8.8	9.5
Oct-95	115.45	<0.02	< 0.01	<0.005	<0.02	<0.5	<1	1.7	3.3	30
Jan-96	113.41	< 0.02	< 0.01	< 0.005	<0.02	<0.5	<1	<1	5.1	26
Apr-96	116.73	<0.02	<0.01	<0.005	<0.02	<0.5	<1	2.8	3.6	46
Jul-96	116.33	<0.01	<0.01	<0.005	< 0.02	<0.5	1.8	9.0	12	17
Oct-96	112.45	<0.01	<0.01	<0.005	<0.02	<0.5	<1	5.4	6.2	21

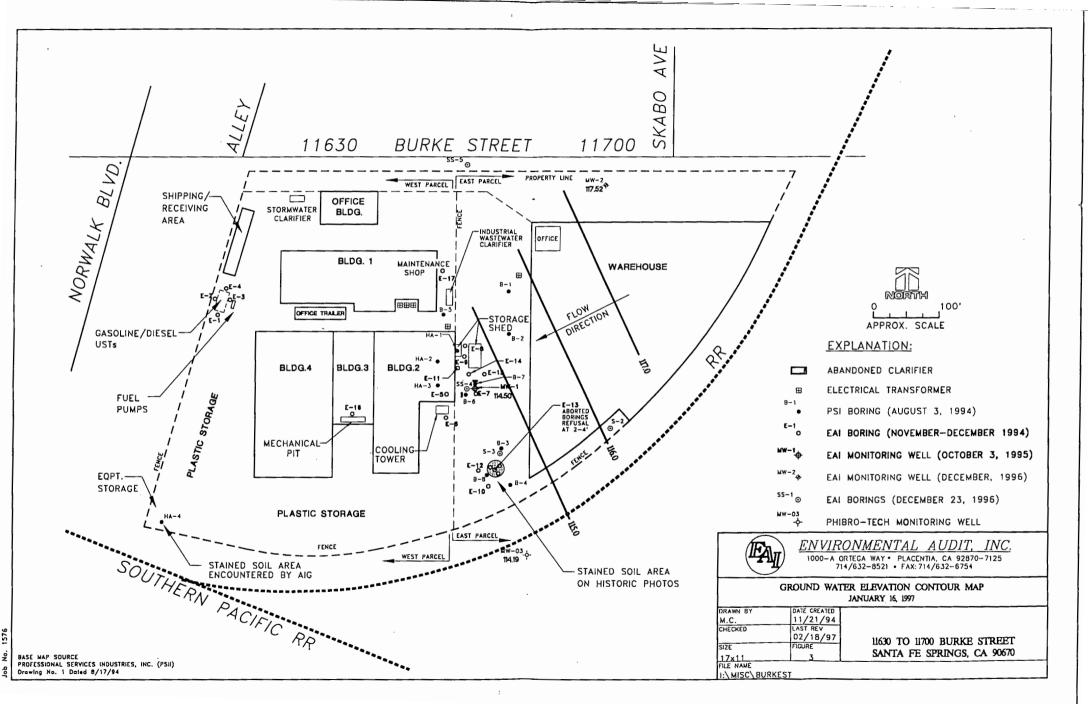
Source: Phibro-Tech, Inc. October 1996 Quarterly Monitoring Report

Note: < = Not detected at or above concentration limit listed.

			6 -	
	FIGURES			
	•			
]				
	·			

ENVIRONIMENTAL AUDIT, INC.


LOCATION MAP 11630-11700 Burke Street Santa Fe Springs, CA 90670


Figure 1

SOURCE: USGS TOPOGRAPHIC 7.5 MINUTE SERIES WHITTIER, CALIFORNIA QUADRANGLE

Project No. 1576 K: V576-LMCDR

Where 15 55 12

JOUNTY OF LOS ANGELY.

FIRE DEPARTMENT

1320 NORTH EASTERN AVENUE LOS ANGELES, CALIFORNIA 90063-3294

Refer reply to:

HEALTH HAZARDOUS MATERIALS DIVISION 5825 Rickenbacker Rd Commerce CA 90040-3027

P. MICHAEL FREEMAN FIRE CHIEF FORESTER & FIRE WARDEN

October 22, 1996

RECEIVED

OCT 2 4 1996

Mr. Larry Patsouras Krekopia Inc. 11700 Burke Street Santa Fe Springs, CA 90606

ENVIRONMENTAL AUDIT

Dear Mr. Patsouras:

SUBJECT:

FORMER PALLEY PROPERTY, 11630-11700 BURKE STREET, SANTA FE

SPRINGS, CA 90606

This Department has completed a review of the letter, dated September 6, 1996, submitted by your attorney, Jack Glaser. As discussed in telephone conversations between Mr. Glaser and Kim Clark of this Department on September 30, 1996, an approval is hereby granted for the sampling of the groundwater monitoring well that is located on the adjacent property, Phibro Tech.

The sampling and analysis procedures must follow those outlined in the workplan previously approved by this Department in the April 2, 1996, letter. You are required to complete the groundwater sampling and the other items included in the previously approved workplan by November 15, 1996 (note: original deadline for implementation was May 31, 1996).

This approval is contingent upon you and your representatives complying with the standards set forth in this Department's "Guidance for Site Mitigation Workplans"; CCR Title 8, Section 5192, "Hazardous Waste Operations and Emergency Response"; and following the workplan as approved. Any deviation or changes must be submitted in writing with this Department's susbsequent approval.

Please notify this Department three (3) working days prior to implementation of the workplan. If you have any questions, please feel free to call Kim Clark at (213) 890-4114.

Very truly yours

THOMAS W. KLINGER, SUPERVISOR

SITE MITIGATION UNIT

HEALTH HAZARDOUS MATERIALS DIVISION

TK:kc

c: Jack Glaser, Jaffe, Trutanich, Scatena & Blum

Steve Bright, Environmental Audit

COUNTY OF LOS ANGEL

FIRE DEPARTMENT

1320 NORTH EASTERN AVENUE LOS ANGELES, CALIFORNIA 90063-3294

. =

Refer reply to:

P. MICHAEL FREEMAN FIRE CHIEF FORESTER & FIRE WARDEN HEALTH HAZARDOUS MATERIALS DIVISION 5825 Rickenbacker Rd Commerce CA 90040-3027

April 2, 1996

RECEIVED

APR - 4 1996

Mr. Larry Patsouras Krekopia Inc. 11700 Burke Street Santa Fe Springs, CA 90606

ENVIRONMENTAL AUDIT

Dear Mr. Patsouras:

SUBJECT: FORMER PALLEY PROPERTY, 11630 - 11700 BURKE ST, SANTA FE

SPRINGS, CA 90606

This Department has completed a review of the "Workplan For Supplemental Subsurface Investigation", dated February 29, 1995, and the addendum, dated March 29, 1996, submitted by your consultant, Environmental Audit, Inc. Based on this review, an approval is hereby granted for implementation of the workplan and the addendum. This approval is contingent upon you and your representatives complying with the standards set forth in this Department's "Guidance for Site Mitigation Workplans"; CCR Title 8, Section 5192, "Hazardous Waste Operations and Emergency Response"; and the following:

- 1. The workplan and addendum shall be adhered to as approved. Any deviation or change must be submitted in writing and written approval obtained by this Department prior to implementation.
- 2. All necessary permits and/or approvals for any work associated with this workplan must be obtained from the appropriate agencies. The requirements listed herein do not exempt the responsible party or his agent from compliance with any other applicable laws, regulations, or ordinances. They do not legalize waste treatment or disposal facilities and they leave unaffected any further restriction or restraint which may be contained in other statutes or required by other agencies.
- 3. This workplan must be implemented by May 31, 1996.
- 4. Notify this office at least three (3) working days prior to the implementation of this workplan.
- 5. All samples shall be analyzed by a laboratory which has been certified by the California Environmental Protection Agency, Department of Toxic Substances Control, for the specified EPA test methods and is capable of reaching the practical quantitation limits specified in SW-846 for those methods.

Mr. L. Patsouras April 2, 1996 Page 2

6. Within sixty (60) days after the completion of the work specified in the plan, a report detailing the results in compliance with the requirements referenced in this Department's "Guidance for Site Mitigation Workplans" must be submitted.

If you have any questions, please feel free to call Kim Clark at (213) 890-4114.

Very truly yours

THOMAS W. KLINGER, SUPERVISOR

SITE MITIGATION UNIT

HEALTH HAZARDOUS MATERIALS DIVISION

TK:kc

c: John Glaser, Jaffe, Trutanich, Scatena & Blum Steve Bright, Environmental Audit, Inc.

APPENDIX B: MONITORING WELL PERMIT

NVI	. ICATION FOR WELL PERMIT RONMENTAL HEALTH 2525 Corporate Place Monterby Par ITY OF LOS ANGELES DEPARTMENT OF HEALTH SERVICES	k, Ca 91754	DATE 04/15/96
T	TYPE OF PERMIT (CHECK)	TYPE OF WELL	
	□ NEW WELL CONSTRUCTION□ RECONSTRUCTION OR RENOVATION	☐ PRIVATE DOMESTIC ☐ PUBLIC DOMESTIC ☐ IRRIGATION	☐ CATHODIC☐ INDUSTRIAL☐ GRAVEL PACK
5	☐ DESTRUCTION	M OBSERVATION/MONITO	
ion Luceso	2-inch diameter flush threaded	schedule 40 PVC	
	METHOD OF SEALING OF CASING Bentonite and concrete sanitary	seal (see atta	ched figure)
	METHOD OF DESTRUCTION		
_	ADDRESS (NUMBER, STREET, AND NEAREST INTERSECTION)		CITY
	11700 Burke Street @ Norwalk Bo	ulevard	
	Two (2) proposed ground water mand MW-3). See attached figure	onitoring well	
_		RES	EIAED
LOCATION		MAY	1 0 1996
읽	·	ENTITO	AMENTAL AUDIT
ב	Permit issued for: 2(tivo) N	Monitoring Well	s Construction
1	Permit issued for 2(two) \	NAME OF WELL OWNER (PRI	NTI
	Cascade Drilling, Inc. TRADE MANE 11250 E. Firestone Boulevard	Mr. Larry Mailing accress 11700 Burk	Patsouras
	MANNE OF WELL DRILLER (PRINT) Cascade Drilling, Inc. TRADE NAME	Mr. Larry Mailing Accress 11700 Burk	Patsouras
	Cascade Drilling, Inc. TRADE NAME 11250 E. Firestone Boulevard BUSINESS ADDRESS Norwalk, CA 90650 I hereby agree to comply in every respect with all	MAME OF WELL OWNER (PRI Mr. Larry MAILING ACCRESS 11700 Burk CITY Santa Fe S DISPOSITION OF APPLICA	Patsouras Ce Street Springs, CA ATION: (For Sanitarians Use Only)
	Cascade Drilling, Inc. TRADE NAME 11250 E. Firestone Boulevard BUSINESS ADDRESS Norwalk, CA 90650 I hereby agree to comply in every respect with all regulations of the County Preventive/Public Health Services and with all ordinances and laws of the County	MANUE OF WELL COMMER (PRI Mr. Larry MAILING ACCRESS 11700 Burk CITY Santa Fe S DISPOSITION OF APPLICA	Patsouras Se Street Springs, CA ATION: (For Sanitarians Use Only)
	Cascade Drilling, Inc. TRADE NAME 11250 E. Firestone Boulevard BUSINESS ADDRESS Norwalk, CA 90650 I hereby agree to comply in every respect with all regulations of the County Preventive/Public Health Services and with all ordinances and laws of the County of Los Angeles and of the State of California pertaining to well construction, reconstruction and destruction. Upon completion of well and within ten days thereafter, I will furnish the County Preventive/Public Health Services with a complete log of the well, giving date drilled, depth of well, all perforations in casing, and any other data deemed necessary by such County Preventive/Public Health	MAME OF WELL OWNER (PRI) Mr. Larry MAILING ACCRESS 11700 Burk CITY Santa Fe S DISPOSITION OF APPLICA APPROVED APPROVED WITH CON	Patsouras Ce Street Springs, CA ATION: (For Sanitarians Use Only) DENIED
	Cascade Drilling, Inc. TRADE MANE 11250 E. Firestone Boulevard BUSINESS ADDRESS CITY Norwalk, CA 90650 I hereby agree to comply in every respect with all regulations of the County Preventive/Public Health Services and with all ordinances and laws of the County of Los Angeles and of the State of California pertaining to well construction, reconstruction and destruction. Upon completion of well and within ten days thereafter, I will furnish the County Preventive/Public Health Services with a complete log of the well, giving date drilled, depth of well, all perforations in casing, and any other data deemed	MAME OF WELL OWNER (PRIME IN LATRY MAILING ACCRESS 11700 Burk CITY Santa Fe S DISPOSITION OF APPLICA APPROVED APPROVED WITH CON If denied or approved with	Patsouras Ce Street Springs, CA ATION: (For Sanitarians Use Only) DENIED
	Cascade Drilling, Inc. TRADE NAME 11250 E. Firestone Boulevard BUSINESS ADDRESS Norwalk, CA 90650 I hereby agree to comply in every respect with all regulations of the County Preventive/Public Health Services and with all ordinances and laws of the County of Los Angeles and of the State of California pertaining to well construction, reconstruction and destruction. Upon completion of well and within ten days thereafter, I will furnish the County Preventive/Public Health Services with a complete log of the well, giving date drilled, depth of well, all perforations in casing, and any other data deemed necessary by such County Preventive/Public Health	Mr. Larry Mr. Larry Mailing ACCRESS 11700 Burk city Santa Fe S DISPOSITION OF APPLICA APPROVED APPROVED WITH CON If denied or approved with here: CATE SAM	Patsouras TARAN Patsouras TARAN Patsouras TARAN Patsouras CA ATION: (For Sanitarians Use Only) DENIED DENIED TARAN TARAN
	Cascade Drilling, Inc. TRADE NAME 11250 E. Firestone Boulevard BUSINESS ADDRESS NOrwalk, CA 90650 I hereby agree to comply in every respect with all regulations of the County Preventive/Public Health Services and with all ordinances and laws of the County of Los Angeles and of the State of California pertaining to well construction, reconstruction and destruction. Upon completion of well and within ten days thereafter, I will furnish the County Preventive/Public Health Services with a complete log of the well, giving date drilled, depth of well, all perforations in casing, and any other data deemed necessary by such County Preventive/Public Health Services. Amand Malan	MAME OF WELL OWNER (PRIME IN Larry MAILING ACCRESS 11700 Burk CITY Santa Fe S DISPOSITION OF APPLICA APPROVED APPROVED WITH CON If denied or approved with here: DATE SAN DATE SAN DATE SAN	Patsouras Te Street Springs, CA ATION: (For Sanitarians Use Only) DENIED IDITIONS conditions, report reason or condition
APPLICANT	Cascade Drilling, Inc. TRADE NAME 11250 E. Firestone Boulevard BUSINESS ADDRESS Norwalk, CA 90650 I hereby agree to comply in every respect with all regulations of the County Preventive/Public Health Services and with all ordinances and laws of the County of Los Angeles and of the State of California pertaining to well construction, reconstruction and destruction. Upon completion of well and within ten days thereafter, I will furnish the County Preventive/Public Health Services with a complete log of the well, giving date drilled, depth of well, all perforations in casing, and any other data deemed necessary by such County Preventive/Public Health Services. Applicant's Signature	Mr. Larry Mr. Larry Mailing ACCRESS 11700 Burk city Santa Fe S DISPOSITION OF APPLICA APPROVED APPROVED WITH CON If denied or approved with here: CATE SAM	Patsouras TARAN Patsouras TARAN Patsouras TARAN Patsouras CA ATION: (For Sanitarians Use Only) DENIED DENIED TARAN TARAN
	Cascade Drilling, Inc. TRADE MANE 11250 E. Firestone Boulevard BUSINESS ADDRESS NOrWalk, CA 90650 I hereby agree to comply in every respect with all regulations of the County Preventive/Public Health Services and with all ordinances and laws of the County of Los Angeles and of the State of California pertaining to well construction, reconstruction and destruction. Upon completion of well and within ten days thereafter, I will furnish the County Preventive/Public Health Services with a complete log of the well, giving date drilled, depth of well, all perforations in casing, and any other data deemed necessary by such County Preventive/Public Health Services. Applicant's Signature Post-R* Fax Note 7671	MAME OF WELL OWNER (PRIME No. Larry MAILING ACCRESS 11700 Burk CITY Santa Fe S DISPOSITION OF APPLICA APPROVED APPROVED WITH CON If denied or approved with here: CATE SAM DATE DATE SEC	Patsouras TARAN Patsouras TARAN Patsouras TARAN Patsouras CA ATION: (For Sanitarians Use Only) DENIED DENIED TARAN TARAN

ENVIRONMENTAL AUDIT

SERVI APPLICATION AND FEE COLLEGION COUNTY OF LOS ANGELES - DEPARTMENT OF HEALTH SERVICESE C E I V E D PUBLIC HEALTH PROGRAMS - ENVIRONMENTAL HEALTH

SERVICE REQUEST APPLICATION

APR 2 2 1996

ENVIRONMENTAL AUDIT

1,	tion. Make money orde	RVICE requested and a er or check payable to L lication is nontransferab	OS ANGELES C	d non-refundable fee to the applica- OUNTY TREASURER, <u>DO NOT</u>			
F	EE REQUIRED*	TYPE OF SERVICE					
	255,00 🙀	MONITORING WEL	L CONSTRUCTI	ON/DESTRUCTION			
		WELL CONSTRUCT Complete and attack		ION OR DESTRUCTION PERMIT Application			
		PRIVATE SEWAGE	DISPOSAL SYS	TEM CONSTRUCTION PERMIT			
		PRIVATE SEWAGE	PRIVATE SEWAGE DISPOSAL SYSTEM RENOVATION/EXPANSION				
		INSPECTION OF M United States Fores	OUNTAIN CABI st Service	N SITE as required by the			
		INSPECTION OF EX	XISTING PRIVAT	TE SEWAGE SYSTEM as required			
_	<u> </u>	WATER SUPPLY TO Department of Agri		FICATION as required by U.S.			
2.	. Check with Contact Of	fice stamped below for	requirements or i	nformation.			
3.	. Complete the required the forms indicated.	information or deliver t	he completed app	olication, money order or check with			
	to: County of Los An	geles		er to Schedule of Fees			
	Department of He Public Health Pro		for	current fiscal year.			
	Environmental He		NOTE: FIELD	PERSONNEL CANNOT ACCEPT FEES.			
	2525 Corporate P						
	Monterey Park, C (213) 881-4147	d 91754					
4	. Phone Contact Office	noted below, after you h	nave received you	r receipt, to request an inspection.			
			vd.), Santa	Fe Springs, C3 4/15/96			
S	ervice/Job Location Addre	ess ·		Date			
<u>37</u>	ir. Larry Patsoura	s. 11700 Burke	St., Santa	Re Springs, Ca			
C)wner/Applicant's Name		Address	Phone No.			
7	Envir a nmental Audi	t, Inc., 1000-A	Ortega Way	, Placentia, CA 714/632-8521			
C	Contractor's Name		Address	Phone No.			
C				No No. Bedrooms action or Renovation Application)			
-	CONTACT	DFFICE		DEPARTMENT STAMP			
			April 17.	1996 LC			
			(k+ 1353	1996 LC 38			
			Dent	- * timber 6 fraifs 15040			
			1 MM1.	71-01 TO			

INSTRUCTIONS

APPENDIX C: GRAPHIC GEOTECHNICAL BORING LOG

CLIENT: Larry Patsouras PROJECT NO.: 1576 DRILL HOLE: MW-2

SITE LOCATION: 11630-11700 Burke Street, Santa Fe Springs, CA 90670

DRILLING CO: Cascade Drilling TYPE OF RIG: Mobile B-61

DRILLING METHOD/EQUIPMENT: HSA HOLE DIAMETER: 8"

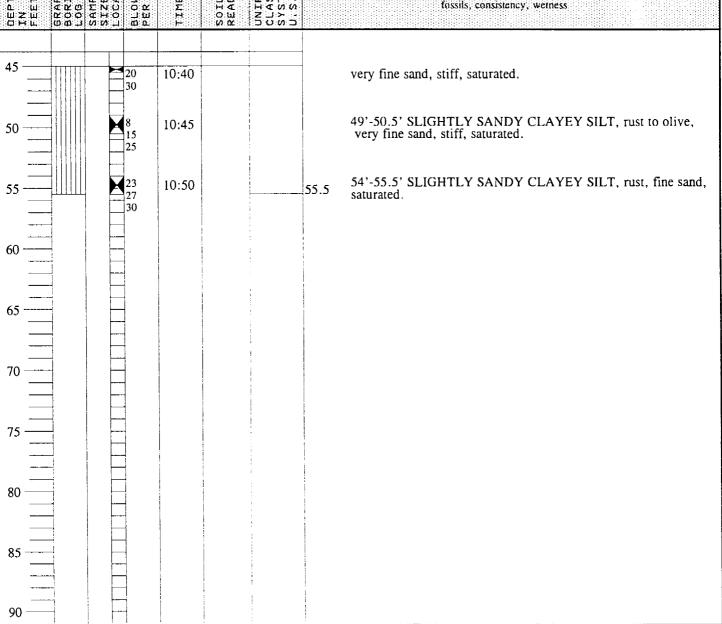
DRIVE WEIGHT/HEIGHT OF DROP: 140 #@ 30" REFERENCE OR DATUM: Surface

START DATE: 12/23/96 COMPLETION DATE: 12/23/96

START DATE:	12/23/90			COMPLETION DATE: <u>12/23/96</u>
GEPTH IN FEET GRAPHIC BORING	SAMPLE SIZE & LOCATION BLOW COUNTS PER 0.5 FT	TIME IN HOURS	SOIL UAPOR READING, PPH UNIFIED SOIL CLASSIFICATION SYSTEM U.S.C.S.	DESCRIPTION In Following Order: LITHOLOGY, color, grain size, sorting, angularity, fossils, consistency, wetness
	, v., v.,			
0			ML	0-3" Asphalt
5 —	15 20 25	10:00	SM	4'-5.5' SLIGHTLY SANDY SILT, rust, very fine sand, dry.
10	17 22 30	10:05		9'-10.5' VERY SILTY SAND, rust, fine sand, sligtly moist.
15	11 13	10:10	SP	14'-15.5' SAND, tan, medium sand, slightly moist.
20	17 10 14 16	10:15		19'-20.5' SAND, tan, medium sand, slightly moist.
25	20 23 25	10:20		24'-25.5' SAND, tan, medium to fine sand, rare coarse sand, slightly moist.
30	5 7 10	10:25	ML	29'-30.5' CLAYEY SILT, tan to rust, very moist.
35	10 15 25	10:30	SM	34'-35.5' SILTY SAND, tan to rust, medium sand, saturated.
40	8 14 26	10:35	SP	39'-40.5' SAND, tan, medium sand, saturated.
45	15		ML	43.9 44'-45.5' SLIGHTLY SANDY CLAYEY SILT, rust to olive, <i>Continued Next Page</i>

NOTES:

Converted to well MW-2



ENVIRONMENTAL AUDIT, INC.

NOTE: This Boring Log Represents Conditions Only at Time and Location Indicated. Subsurface Conditions May Differ at Other Locations and Times.

LOGGED BY: BMH DATE: 12/23/96 APPROVED BY: BHM RG #: 5649

CLIENT: Larry Patsouras	PROJECT NO.: 1576 DRILL HOLE: MW-2		
SITE LOCATION: 11630-11700 Burke Street, Santa	Fe Springs, CA 90670		
DRILLING CO: Cascade Drilling	TYPE OF RIG: Mobile B-61		
DRILLING METHOD/EQUIPMENT: HSA	HOLE DIAMETER: 8"		
DRIVE WEIGHT/HEIGHT OF DROP: <u>140 # @ 30"</u>	REFERENCE OR DATUM: Surface		
START DATE: <u>12/23/96</u>	COMPLETION DATE: 12/23/96		
NTS ON HOURS PPH CATION	DESCRIPTION		
DEPTH FEET GGRAPHIC GGRAPHIC GGRAPHIC GORING LOCATION BLOW COUN BLOW	In Following Order: LITHOLOGY, color, grain size, sorting, angularity,		

NOTES:

Converted to well MW-2

ENVIRONMENTAL AUDIT, INC.

NOTE: This Boring Log Represents Conditions Only at Time and Location Indicated. Subsurface Conditions May Differ at Other Locations and Times.

LOGGED BY: BMH DATE: 12/23/96 APPROVED BY: BHM RG #: 5649

APPENDIX D: CHAIN OF CUSTODY RECORDS
AND LABORATORY REPORTS

RECEIVED

JAN - 6 1997

ENVIRUNMENTAL AUDIT

January 02, 1997

Ed Leonhardt Environmental Audit, Inc. 1000-A Ortega Way Placentia, CA 92670-7125

Subject:

Calscience Work Order Number:

Client Reference:

96-12-397

Kekropia, Inc./1576

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 12/23/96 and analyzed in accordance with the attached chain-of-custody.

The results in this analytical report are limited to the samples tested, and any reproduction of this report must be made in its entirety.

If you have any questions regarding this report, require sampling supplies or field services, or information on our analytical services, please feel free to call me at (714) 895-5494.

Sincerely,

Calscience Environmental

Laboratories, Inc.

William H. Christensen

Deliverables Manager

Steven L. Lane

Laboratory Director

Environmental Audit, Inc.	Date Sampled:	12/23/96
1000-A Ortega Way	Date Received:	12/23/96
Placentia, CA 92670-7125	Date Extracted:	12/26/96
	Date Analyzed:	12/26/96
	Work Order No.:	96-12-397
Attn: Ed Leonhardt	Method:	EPA 418.1
RE: Kekropia, Inc./1576	Page 1 of 1	

All total recoverable petroleum hydrocarbon concentrations are reported in mg/kg (ppm).

Sample Number	Concentration	Reportable <u>Limit</u>
SS-4	7530	500
Method Blank	ND	10

ND denotes not detected at indicated reportable limit.

Each sample was received by CEL chilled, intact, and with chain-of-custody attached.

Muhan

Environmental Audit, Inc.	Date Sampled:	12/23/96
1000-A Ortega Way	Date Received:	12/23/96
Placentia, CA 92670-7125	Date Digested:	12/27/96
	Date Analyzed:	12/30/96
	Work Order No.:	96-12-397
Attn: Ed Leonhardt	Method:	EPA 6010A
RE: Kekropia, Inc./1576	Page 1 of 1	

All concentrations are reported in mg/kg (ppm). Analyses for arsenic were conducted on a total digestion.

Sample Number	Arsenic <u>Concentration</u>	Reportable <u>Limit</u>
SS-5 SS-1 S-3	ND ND ND	5.0 5.0 5.0
Method Blank	ND	5.0

QA/QC

	Sample	Duplicate		Control
Sample Number	Conc.	Conc.	<u>%RPD</u>	Limits (%)
96-12-385-21 (Duplicate)	64.8	66.4	2	0 - 20

ND denotes not detected at indicated reportable limit.

Each sample was received by CEL chilled, intact, and with chain-of-custody attached.

Muhan

Environmental Audit, Inc.	Date Sampled:	12/23/96
1000-A Ortega Way	Date Received:	12/23/96
Placentia, CA 92670-7125	Date Digested:	12/27/96
	Date Analyzed:	12/27-31/96
	Work Order No.:	96-12-397

Attn: Ed Leonhardt

RE: Kekropia, Inc./1576 Page 1 of 5

All concentrations are reported in mg/kg (ppm). Analyses for Title 22 metals were conducted on a total digestion.

Sample Number: S-2

<u>Analyte</u>	Method	Concentration	Reportable <u>Limit</u>
Antimony	EPA 6010A	ND	6.0
Arsenic	EPA 6010A	ND	5.0
Barium	EPA 6010A	77.3	10.0
Beryllium	EPA 6010A	ND	0.6
Cadmium	EPA 6010A	1.9	1.5
Chromium	EPA 6010A	12.8	2.5
Cobalt	EPA 6010A	4.7	2.5
Copper	EPA 6010A	13.5	2.5
Lead	EPA 6010A	ND	6.0
Mercury	EPA 7471A	ND	0.25
Molybdenum	EPA 6010A	ND	2.5
Nickel	EPA 6010A	6.0	2.5
Selenium	EPA 6010A	ND	8.0
Silver	EPA 6010A	ND	2.5
Thallium	EPA 6010A	ND	8.0
Vanadium	EPA 6010A	24.7	2.5
Zinc	EPA 6010A	27.0	2.5

Environmental Audit, Inc.

Date Sampled: 12/23/96
1000-A Ortega Way

Date Received: 12/23/96
Placentia, CA 92670-7125

Date Digested: 12/27/96
Date Analyzed: 12/27-31/96
Work Order No.: 96-12-397

Attn: Ed Leonhardt

RE: Kekropia, Inc./1576 Page 2 of 5

All concentrations are reported in mg/kg (ppm). Analyses for Title 22 metals were conducted on a total digestion.

Sample Number: Method Blank

<u>Analyte</u>	Method	Concentration	Reportable <u>Limit</u>
Antimony	EPA 6010A	ND	6.0
Arsenic	EPA 6010A	ND	5.0
Barium	EPA 6010A	ND	10.0
Beryllium	EPA 6010A	ND	0.6
Cadmium	EPA 6010A	ND	1.5
Chromium	EPA 6010A	ND	2.5
Cobalt	EPA 6010A	ND	2.5
Copper	EPA 6010A	ND	2.5
Lead	EPA 6010A	ND	6.0
Mercury	EPA 7471A	ND	0.25
Molybdenum	EPA 6010A	ND	2.5
Nickel	EPA 6010A	ND	2.5
Selenium	EPA 6010A	ND	8.0
Silver	EPA 6010A	ND	2.5
Thallium	EPA 6010A	ND	8.0
Vanadium	EPA 6010A	ND	2.5
Zinc	EPA 6010A	ND	2.5

Environmental Audit, Inc.	Date Sampled:	12/23/96
1000-A Ortega Way	Date Received:	12/23/96
Placentia, CA 92670-7125	Date Digested:	12/27/96
	Date Analyzed:	12/27-31/96
	Work Order No.:	96-12-397

Attn: Ed Leonhardt

RE: Kekropia, Inc./1576 Page 3 of 5

All concentrations are reported in mg/kg (ppm). Analyses for Title 22 metals were conducted on a total digestion.

Sample Number: Laboratory Control Sample

<u>Analyte</u>	<u>Method</u>	Conc. <u>Added</u>	Conc. <u>Rec.</u>	%REC	Control <u>Limits (%)</u>
Barium	EPA 6010A	10.0	9.80	98	80 - 120
Copper	EPA 6010A	10.0	9.36	94	80 - 120
Lead	EPA 6010A	10.0	9.17	92	80 - 120
Selenium	EPA 6010A	10.0	9.36	94	80 - 120
Silver	EPA 6010A	5.00	4.23	85	80 - 120
Thallium	EPA 6010A	10.0	8.78	88	80 - 120
Zinc	EPA 6010A	10.0	9.29	93	80 - 120

Environmental Audit, Inc.	Date Sampled:	12/23/96
1000-A Ortega Way	Date Received:	12/23/96
Placentia, CA 92670-7125	Date Digested:	12/27/96
	Date Analyzed:	12/27-31/96
	Work Order No.:	96-12-397

Attn: Ed Leonhardt

RE: Kekropia, Inc./1576 Page 4 of 5

All concentrations are reported in mg/kg (ppm). Analyses for Title 22 metals were conducted on a total digestion.

QA/QC

	•				
QA/QC					
Sample Number: 96-12-385-21 (Duplicate)					Control X Limits (%)
		Sample	Duplicate		Control 🗇 🗡 🔧
<u>Analyte</u>	<u>Method</u>	Conc.	Conc.	<u>%RPD</u>	Limits (%)
Antimony	EPA 6010A	ND	ND	NA	0 - 20
Arsenic	EPA 6010A	64.8	66.4	2	0 - 20
Barium	EPA 6010A	130	129	1	0 - 20
Beryllium	EPA 6010A	0.6	0.6	0	0 - 20
Cadmium	EPA 6010A	3.3	3.4	3	0 - 20
Chromium	EPA 6010A	17.7	17.2	3	0 - 20
Cobalt	EPA 6010A	7.1	7.0	1	0 - 20
Copper	EPA 6010A	38.4	38.6	1	0 - 20
Lead	EPA 6010A	107	103	4	0 - 20
Molybdenum	EPA 6010A	ND	ND	NA	0 - 20
Nickel	EPA 6010A	15.0	15.9	6	0 - 20
Selenium	EPA 6010A	ND	ND	NA	0 - 20
Silver	EPA 6010A	ND	ND	NA	0 - 20
Thallium	EPA 6010A	ND	ND	NA	0 - 20
Vanadium	EPA 6010A	29.3	29.4	0	0 - 20
Zinc	EPA 6010A	234	240	3	0 - 20

Environmental Audit, Inc.	Date Sampled:	12/23/96
1000-A Ortega Way	Date Received:	12/23/96
Placentia, CA 92670-7125	Date Digested:	12/27/96
	Date Analyzed:	12/27-31/96
	Work Order No.:	96-12-397

Attn: Ed Leonhardt

RE: Kekropia, Inc./1576 Page 5 of 5

All concentrations are reported in mg/kg (ppm). Analyses for Title 22 metals were conducted on a total digestion.

QA/QC

Sample Number: 96-12-330-1 (Duplicate)

<u>Analyte</u>	<u>Method</u>	Sample <u>Conc.</u>	Duplicate <u>Conc.</u>	%RPD	Control Limits (%)
Mercury	EPA 7471A	ND	ND	NA	0 - 20

ND denotes not detected at indicated reportable limit.

Each sample was received by CEL chilled, intact, and with chain-of-custody attached.

EPA 8081 PCBs Only

Client Name:

Environmental Audit, Inc.

Project ID:

Kekropia, Inc./1576

Work Order Number:

96-12-397

QC Batch ID:

961226sx

Date Collected.

12/23/96

Matrix:

Solid

Date Received:

12/23/96

Extraction:

EPA 3540B

Date Extracted:

12/26/96

Method:

EPA 8081

Date Analyzed:

12/31/96

Client Sample Number:

SS-4

Lab Sample Number:
Analysis Comment:

96-12-397-3 Mercury clean up carried out.

Ή	<u>Parameter</u>	<u>Result</u>	RL	<u>Qualifiers</u>	<u>Units</u>
-					
	Aroclor-1016	ND	100		ug/kg
犪	Aroclor-1221	ND	100		ug/kg
سنيد	Aroclor-1232	ND	100		ug/kg
	Aroclor-1242	ND	100		ug/kg
100	Aroclor-1248	ND	100		ug/kg
ونند	Aroclor-1254	ND	100		ug/kg
	Aroclor-1260	ND	100		ug/kg
3 N	Aroclor-1262	ND	100		ug/kg

198	Surrogates:	<u>REC (%)</u>	Control Limits	Qualifiers
	Decachlorobiphenyl	57	50-130	
	2,4,5,6-Tetrachloro-m-Xylene	68	50-130	

ANALYTICAL REPORT EPA 8081 PCBs Only

Client Name: El

Environmental Audit, Inc.

Project ID:

Kekropia, Inc./1576

Work Order Number:

96-12-397

QC Batch ID:

961226sx

Solid

Date Collected:
Date Received:

N/A N/A

Matrix: Extraction:

EPA 3540B

Date Extracted:

12/26/96

Method:

EPA 8081

Date Analyzed:

12/31/96

Client Sample Number:

Method Blank

Lab Sample Number:

095-01-014-442

<u>Parameter</u>	Result	RL	Qualifiers	<u>Units</u>
Aroclor-1016	ND	100		ug/kg
Aroclor-1221	ND	100		ug/kg
Aroclor-1232	ND	100		ug/kg
Aroclor-1242	ND	100		ug/kg
Aroclor-1248	ND	100		ug/kg
Aroclor-1254	ND	100		ug/kg
Aroclor-1260	ND	100		ug/kg
Aroclor-1262	ND	100		ug/kg

ı	Surrogates:	REC (%)	Control Limits	Qualifiers
	Decachlorobiphenyl	71	50-130	
I	2,4,5,6-Tetrachloro-m-Xylene	75	50-130	

EPA 8270B Semi-volatile Organics

aboratories, Inc.

Client Name: Environmental Audit, Inc. Project ID: Kekropia, Inc./1576

Work Order Number: 96-12-397

Date Collected: QC Batch ID: 12/23/96 1226-1 Matrix: Date Received: Solid 12/23/96 Date Extracted: 12/26/96

Extraction: **EPA 3540B** Method: **EPA 8270B** Date Analyzed: 12/27/96

Client Sample Number: **SS-4**

Lab Sample Number: 96-12-397-3

最多数	<u>Parameter</u>	<u>Result</u>	<u>RL</u>	Qualifiers	<u>Units</u>
*	N-Nitrosodimethylamine	ND	0.5		mg/kg
	Aniline	ND	0.5		mg/kg
941	Phenol	ND	0.5		mg/kg
	Bis(2-Chloroethyl) Ether	ND	0.5		mg/kg
	2-Chlorophenol	ND	0.5		mg/kg
4	1,3-Dichlorobenzene	ND	0.2		mg/kg
4	1,4-Dichlorobenzene	ND	0.2		mg/kg
	Benzyl Alcohol	ND	2		mg/kg
***	1,2-Dichlorobenzene	ND	0.2		mg/kg
-	2-Methylphenol	ND	0.5		mg/kg
	Bis(2-Chloroisopropyl) Ether	ND	0.5		mg/kg
**	4-Methylphenol	ND	0.5		mg/kg
***	N-Nitroso-di-n-propylamine	ND	2		mg/kg
	Hexachloroethane	ND	0.2		mg/kg
持续	Nitrobenzene	ND	0.2		mg/kg
	Isophorone	ND	0.2		mg/kg
	2-Nitrophenol	ND	0.2		mg/kg
好	2,4-Dimethylphenol	ND	0.2		mg/kg
4	Benzoic Acid	ND	2		mg/kg
	Bis(2-Chloroethoxy) Methane	ND	0.2		mg/kg
-194	2,4-Dichlorophenol	ND	0.5		mg/kg
	1,2,4-Trichlorobenzene	ND	0.2		mg/kg
1 mae	Naphthalene	ND	0.2		mg/kg
ंड्रें	4-Chloroaniline	ND	0.5		mg/kg
	Hexachloro-1,3-Butadiene	ND	0.2		mg/kg
278	4-Chloro-3-Methylphenoi	ND	0.5		mg/kg
14.8	2-Methylnaphthalene	ND	0.2		mg/kg
-	Hexachlorocyclopentadiene	ND	0.5		mg/kg
Q.	2,4,5-Trichlorophenol	ND	0.5		mg/kg
	2-Chloronaphthalene	ND	0.2		mg/kg
-	2-Nitroaniline	ND	2		mg/kg
- Şerő	Dimethyl Phthalate	ND	0.2		mg/kg
4.0	Acenaphthylene	ND	0.2		mg/kg

alscience nvironmental aboratories, Inc.

ANALYTICAL REPORT

EPA 8270B Semi-volatile Organics

Client Name: Environmental Audit, Inc.

Project ID: Kekropia, Inc./1576

Work Order Number: 96-12-397

QC Batch ID: 1226-1 Date Collected: 12/23/96 Matrix: Date Received: Solid 12/23/96 Extraction: **EPA 3540B** Date Extracted: 12/26/96 Method: **EPA 8270B** Date Analyzed: 12/27/96

Client Sample Number: **SS-4**

Lab Sample Number: 96-12-397-3

	<u>Parameter</u>	<u>Result</u>	<u>RL</u>	Qualifiers	<u>Units</u>
	3-Nitroaniline	ND	2		mg/kg
•	Acenaphthene	ND	0.2		mg/kg
į.	2,4-Dinitrophenol	ND	2		mg/kg
	4-Nitrophenol	ND	2		mg/kg
•	Dibenzofuran	ND	0.2		mg/kg
	2,4-Dinitrotoluene	ND	0.2		mg/kg
	2,6-Dinitrotoluene	ND	0.2		mg/kg
•	Diethyl Phthalate	ND	0.2		mg/kg
	4-Chlorophenyl-Phenyl Ether	ND	0.2		mg/kg
	Fluorene	ND	0.2		mg/kg
	4-Nitroaniline	ND	2		mg/kg
i	Azobenzene	ND	0.2		mg/kg
	4,6-Dinitro-2-Methylphenol	ND	2		mg/kg
1	N-Nitrosodiphenylamine	ND	2		mg/kg
	2,4,6-Trichlorophenol	ND	2		mg/kg
	4-Bromophenyl-Phenyl Ether	ND	0.2		mg/kg
1	Hexachlorobenzene	ND	0.2		mg/kg
	Pentachlorophenol	ND	2		mg/kg
	Phenanthrene	ND	0.2		mg/kg
1	Anthracene	ND	0.2		mg/kg
	Di-n-Butyl Phthalate	ND	40		mg/kg
	Fluoranthene	ND	0.2		mg/kg
	Benzidine	ND	2.0		mg/kg
:	Pyrene	ND	0.2		mg/kg
	Butyl Benzyl Phthalate	ND	0.2		mg/kg
1	3,3'-Dichlorobenzidine	ND	2.0		mg/kg
	Benzo (a) Anthracene	ND	0.2		mg/kg
	Bis(2-Ethylhexyl) Phthalate	ND	2.0		mg/kg
	Chrysene	ND	0.2		mg/kg
	Di-n-Octyl Phthalate	ND	1.0		mg/kg
	Benzo (b and k) Fluoranthenes	ND	1.0		mg/kg
'	Benzo (a) Pyrene	ND	0.2		mg/kg
	Indeno (1,2,3-c,d) Pyrene	ND	1.0		mg/kg

7440 Lincoln Way, Garden Grove, CA 92841-1432 • TEL: (714) 895-5494 • FAX: (714) 894-7501

ANALYTICAL REPORT EPA 8270B Semi-volatile Organics

aboratories, Inc.

Client Name:

Environmental Audit, Inc.

Project ID:

Kekropia, Inc./1576

Work Order Number:

96-12-397

QC Batch ID:

1226-1

Solid

Date Collected: Date Received:

12/23/96 12/23/96

Matrix:

Extraction: Method:

EPA 3540B

Date Extracted:

12/26/96

EPA 8270B

Date Analyzed:

12/27/96

Client Sample Number:

SS-4

Lab Sample Number:

96-12-397-3

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>Qualifiers</u>	<u>Units</u>
Dibenz (a,h) Anthracene	ND	1.0		mg/kg
Benzo (g,h,i) Perylene	ND	1.0		mg/kg

	Surrogates:	REC (%)	Control Limits	Qualifiers
Miles	2-Fluorophenol	101	25-121	
سنند	p-Terphenyl-d14	103	18-137	
	2,4,6-Tribromophenol	111	19-122	
	2-Fluorobiphenyl	110	30-115	
شو	Nitrobenzene-d5	81	23-120	
	Phenol-d6	105	24-113	
1127				

EPA 8270B Semi-volatile Organics

aboratories, Inc.

Client Name:

Environmental Audit, Inc.

Project ID:

Kekropia, Inc./1576

Work Order Number:

96-12-397

QC Batch ID:

1226-1

Matrix:

Solid

Date Collected: Date Received:

N/A N/A

Extraction:

EPA 3540B

Date Extracted:

12/26/96

Method:

EPA 8270B

Date Analyzed:

12/27/96

Client Sample Number:

Method Blank

Lab Sample Number:

095-01-002-100

4.47	<u>Parameter</u>	<u>Result</u>	<u>RL</u>	Qualifiers	<u>Units</u>
349	N-Nitrosodimethylamine	ND	0.5		ma/ka
_	Aniline	ND	0.5		mg/kg mg/kg
(a)	Phenol	ND	0.5		mg/kg mg/kg
de line	Bis(2-Chloroethyl) Ether	ND	0.5		mg/kg
-	2-Chlorophenol	ND ND	0.5		
W.	1,3-Dichlorobenzene	ND	0.2		mg/kg mg/kg
	1,4-Dichlorobenzene	ND	0.2		mg/kg
_	Benzyl Alcohol	ND	2		mg/kg
14	1,2-Dichlorobenzene	ND	0.2		mg/kg
	2-Methylphenol	ND	0.5		mg/kg
_	Bis(2-Chloroisopropyl) Ether	ND	0.5		mg/kg
7.00	4-Methylphenol	ND	0.5		mg/kg
444	N-Nitroso-di-n-propylamine	ND	2		mg/kg
_	Hexachloroethane	ND	0.2		mg/kg
10.78	Nitrobenzene	ND	0.2		mg/kg
-	Isophorone	ND	0.2		mg/kg
_	2-Nitrophenol	ND	0.2		mg/kg
100	2,4-Dimethylphenol	ND	0.2		mg/kg
-	Benzoic Acid	ND	2		mg/kg
•	Bis(2-Chloroethoxy) Methane	ND	0.2		mg/kg
*	2,4-Dichlorophenol	ND	0.5		mg/kg
	1,2,4-Trichlorobenzene	ND	0.2		mg/kg
	Naphthalene	ND	0.2		mg/kg
1	4-Chloroaniline	ND	0.5		mg/kg
_	Hexachloro-1,3-Butadiene	ND	0.2		mg/kg
	4-Chloro-3-Methylphenol	ND	0.5		mg/kg
39	2-Methylnaphthalene	ND	0.2		mg/kg
فنات	Hexachlorocyclopentadiene	ND	0.5		mg/kg
	2,4,5-Trichlorophenol	ND	0.5		mg/kg
Ģ÷.	2-Chloronaphthalene	ND	0.2		mg/kg
	2-Nitroaniline	ND	2		mg/kg
	Dimethyl Phthalate	ND	0.2		mg/kg
1.00	Acenaphthylene	ND	0.2		mg/kg
					39

alscience nvironmental

ANALYTICAL REPORT

EPA 8270B Semi-volatile Organics

aboratories, Inc.

Client Name:

Environmental Audit, Inc.

Project ID:

Kekropia, Inc./1576

Work Order Number:

96-12-397

QC Batch ID:

1226-1

Matrix:

Solid

Date Collected: Date Received:

N/A N/A

Date Extracted:

12/26/96

Extraction: Method:

EPA 3540B EPA 8270B

Date Analyzed:

12/27/96

Client Sample Number:

Method Blank

Lab Sample Number:

095-01-002-100

ket	<u>Parameter</u>	Result	<u>RL</u>	<u>Qualifiers</u>	<u>Units</u>
-	3-Nitroaniline	ND	2		mg/kg
	Acenaphthene	ND	0.2		mg/kg
3.5	2,4-Dinitrophenol	ND	2		mg/kg
-	4-Nitrophenol	ND	2		mg/kg
	Dibenzofuran	ND	0.2		mg/kg
Fine	2,4-Dinitrotoluene	ND	0.2		mg/kg
-	2,6-Dinitrotoluene	ND	0.2		mg/kg
	Diethyl Phthalate	ND	0.2		mg/kg
35	4-Chlorophenyl-Phenyl Ether	ND	.0.2		mg/kg
-	Fluorene	ND	0.2		mg/kg
	4-Nitroaniline	ND	2		mg/kg
1/3	Azobenzene	ND	0.2		mg/kg
	4,6-Dinitro-2-Methylphenol	ND	2		mg/kg
	N-Nitrosodiphenylamine	ND	2		mg/kg
443	2,4,6-Trichlorophenol	ND	2		mg/kg
-	4-Bromophenyl-Phenyl Ether	ND	0.2		mg/kg
	Hexachlorobenzene	ND	0.2		mg/kg
9	Pentachlorophenol	ND	2		mg/kg
-	Phenanthrene	ND	0.2		mg/kg
	Anthracene	ND	0.2		mg/kg
7	Di-n-Butyl Phthalate	ND	40		mg/kg
	Fluoranthene	ND	0.2		mg/kg
	Benzidine	ND	2.0		mg/kg
-046	Pyrene	ND	0.2		mg/kg
-	Butyl Benzyl Phthalate	ND	0.2		mg/kg
	3,3'-Dichlorobenzidine	ND	2.0		mg/kg
1/4/24	Benzo (a) Anthracene	ND	0.2		mg/kg
-	Bis(2-Ethylhexyl) Phthalate	ND	2.0		mg/kg
	Chrysene	ND	0.2		mg/kg
	Di-n-Octyl Phthalate	ND	1.0		mg/kg
-	Benzo (b and k) Fluoranthenes	ND	1.0		mg/kg
	Benzo (a) Pyrene	ND	0.2		mg/kg
**	Indeno (1,2,3-c,d) Pyrene	ND	1.0		mg/kg

7440 Lincoln Way, Garden Grove, CA 92841-1432 • TEL: (714) 895-5494 • FAX: (714) 894-7501

alscience nvironmental

ANALYTICAL REPORT

EPA 8270B Semi-volatile Organics

, aboratories, Inc.

Client Name:

Environmental Audit, Inc.

Project ID:

Kekropia, Inc./1576

Work Order Number:

96-12-397

QC Batch ID:

1226-1

Date Collected:

N/A

Matrix:

Solid

Date Received:

N/A

Extraction:

EPA 3540B

Date Extracted:

12/26/96

Method:

EPA 8270B

Date Analyzed:

12/27/96

Client Sample Number:

Method Blank

Lab Sample Number:

095-01-002-100

<u>Parameter</u>	<u>Result</u>	RL	Qualifiers	<u>Units</u>
Dibenz (a,h) Anthracene Benzo (g,h,i) Perylene	ND ND	1.0		mg/kg mg/kg

Surrogates:	REC (%)	Control Limits	Qualifiers
2-Fluorophenol	110	25-121	
p-Terphenyl-d14	106	18-137	
2,4,6-Tribromophenol	78	19-122	
2-Fluorobiphenyl	99	30-115	
Nitrobenzene-d5	84	23-120	
Phenol-d6	106	24-113	

aboratories, Inc. QUALITY ASSURANCE SUMMARY

Method EPA 418.1

Environmental Audit, Inc.

Work Order No.:

96-12-397

Page 1 of 1

Date Analyzed:

12/26/96

Matrix Spike/Matrix Spike Duplicate

Sample Spiked: 96-12-376-13

<u>Analyte</u>	MS%REC	MSD%REC	Control <u>Limits</u>	%RPD	Control <u>Limits</u>
Total Recoverable Petroleum Hydrocarbons	102	97	55 - 135	5	0 - 30

aboratories, Inc. QUALITY ASSURANCE SUMMARY

ICP / GF Metals (Solids)

Environmental Audit, Inc.

Work Order No.:

96-12-397

Page 1 of 1

Date Analyzed:

12/20-30/96

Matrix Spike

Sample Spiked: 96-12-385-21

Analyte	Method	Sample <u>Conc.</u>	Spike <u>Added</u>	MS <u>Conc.</u>	%REC	Control <u>Limits</u>
Antimony	EPA 6010A	ND	50.0	43.7	87	80 - 120
Arsenic	EPA 6010A	64.8	50.0	105	80	80 - 120
Barium	EPA 6010A	130	50.0	169	78Note 1	80 - 120
Beryllium	EPA 6010A	0.6	50.0	43.1	85	80 - 120
Cadmium	EPA 6010A	3.3	50.0	44.6	83	80 - 120
Chromium	EPA 6010A	17.7	50.0	63.4	91	80 - 120
Cobalt	EPA 6010A	7.1	50.0	49.8	85	80 - 120
Copper	EPA 6010A	38.4	50.0	99.2	122Note 1	80 - 120
Lead	EPA 6010A	107	50.0	104	Note 1	80 - 120
Molybdenum	EPA 6010A	ND	50.0	42.4	85	80 - 120
Nickel	EPA 6010A	15.0	50.0	57.6	85	80 - 120
Selenium	EPA 6010A	ND	50.0	39.4	79Note 1	80 - 120
Silver	EPA 6010A	ND	25.0	0.5	2Note 1	80 - 120
Thallium	EPA 6010A	ND	50.0	25.1	50Note 1	80 - 120
Vanadium	EPA 6010A	29.3	50.0	81.2	104	80 - 120
Zinc	EPA 6010A	234	50.0	382	296 ^{Note 1}	80 - 120
	, , ,					

Matrix Spike

Sample Spiked: 96-12-330-1

<u>Analyte</u>	Method	Sample <u>Conc.</u>	Spike <u>Added</u>	MS <u>Conc.</u>	%REC	Control <u>Limits</u>
Mercury	EPA 7471A	ND	2.50	2.60	104	50 - 130

^{1.} The MS associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS was in control and, hence, the associated sample data was reported with no further corrective action required.

Quality Control - Spike/Spike Duplicate

EPA 8270B Semi-volatile Organics

MS/MSD Batch Number:

397-3

Instrument:

GC/MS F

Matrix:

Solid

Date Extracted: 12/26/96

Method:

EPA 8270B

Date Analyzed:

12/27/96

Spiked Sample ID: SS-4

<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Phenol	82	89	20-120	8	0-42	
2-Chlorophenol	94	97	23-134	3	0-40	
1,4-Dichlorobenzene	81	87	20-124	7	0-28	
N-Nitroso-di-n-propylamine	87	95	0-230	8	0-38	
1,2,4-Trichlorobenzene	87	92	44-142	5	0-28	
Acenaphthene	103	109	47-145	5	0-31	
2,4-Dinitrotoluene	60	78	39-139	26	0-38	

Quality Control - LCS/LCS Duplicate

EPA 8270B Semi-volatile Organics

LCS/LCSD Batch Number: 1226-1

Instrument:

GC/MS F

Matrix:

Solid

Date Extracted:

12/26/96

Method:

EPA 8270B

Date Analyzed:

12/27/96

Parameter	LCS %REC	LCSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Phenol	101	99	20-120	2	0-42	
2-Chlorophenol	109	89	23-134	20	0-40	
1,4-Dichlorobenzene	97	89	20-124	8	0-28	
N-Nitroso-di-n-propylamine	104	100	0-230	3	0-38	
1,2,4-Trichlorobenzene	97	96	44-142	1	0-28	
Acenaphthene	111	96	47-145	14	0-31	
2.4-Dinitrotoluene	100	95	39-139	5	0-38	

Matrix:

Method:

Quality Control - LCS/LCS Duplicate EPA 8081 PCBs Only

LCS/LCSD Batch Number: 961226sx

Solid

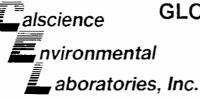
EPA 8081

Instrument:

GC 16

Date Extracted:

12/26/96


Date Analyzed:

12/31/96

<u>Parameter</u>	LCS %REC LCSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers

Aroclor-1260 80 90 50-135 11 0-25

GLOSSARY OF TERMS AND QUALIFIERS

Work Order Number: 96-12-397

Qualifier

Definition

ND

Not detected at indicated reporting limit.

Muhan

F	~	1.	\
	1	7	/

ENVIRONMENTAL AUDIT, INC.

Ci .	r		D
Chain	OT	Custody	Kecord

	1		137		. <i>Г</i>			1	decree and I	T		J			J.,															
	I)	1	ran.	nınş Sub:	z, <i>e</i> en stanc	viron es Ma	meni nager	ai And nent a	alyses and F nd Remedi	1az atio	arc m	101	S			νм	PLIN	G R	:OL	JIREI	MEN	ITS:	R	CRA I		npdes 🗀	SDWA 🔲 .			ב
	I /	1	იიი	OR'	TEGA	. WAY	SUIT	ΓF A	2 (714) (532	- 8	352	21		- 1					POR	1	T	URN	IARO	UND	TIME:				
		P	LAC	ENT	IA, C	A 926	70-7	125	(714)	632	- 1	67!	54		- 1			00 E 00				2	۸ME	DΛY		24hr 🗌	48hr 🔲	NOR	MAL 🌇	
PROJECT NO.	PI	ROJE Ke	CT N	ΛΜΕ 200	, , .	Inc.		. L			ON'I	R				ΛN	IALY	SES	REC	UES	TED	,					REMARK	S		
1576		الالا دى	30.	- /1	700	G)/	Ke 5 /A	tret			7	- -	Т	-		Т	-T	T _F -				T		Τ-	VERS					
SAMPLER (Signature will Lohn R. C	-1~6	3 11 0			/ 			MANAC					_					OJWE							OF CONTAINERS					
SILR	4	1				Ē	dL	eculh	arlt		į	, iUB	015M	1.8	0	9 9	EASE	TALS		٥١.	1	, ,			OFC					
SAMPLE NUMBER	DATE	TI		COMP		SAN	MPLE D	ESCRIPTI	ON	GLASS	PLASTIC STSTSTSTSTSTSTSTSTSTSTSTSTSTSTSTSTSTST	BKASS N	TPH-G 8015M	TRPH 41	BTEX 80;	VOC 824		CAM ME	LEAD	HVOC 86	4 25.0	5000			NUMBER					
55-5	12/23/4		110		-5	oi / ((c)	i5-1	18"	1											/				ı					
55-1	11		1120		<u>-Sa</u>	i) (g) 3	-41		1											/_				1					
45-4	11	113	:15		-50	10	_ 2	4"		/	_			/								/			j					
S-3	1]	1/3	35		-5	01/	0,	3-4	/''	/										/	/				1					
S-2	jl ———	۱۱۱	15		-Soi	/@	3-	3-4		/								/]					
																									Í					
															}							ļ				,				
PETINOLIISEED BY: ISIOOALU	re/Namel				TOATE	IIME	REGER	VID BY: ISV	grature/Name)			10	€ RE	INC	HSI-JE	D BY:	tion.	iture/	Name	. O	OTA F C	L N INC	OME AIN	BER ERS	5	SECENTED BY	: (Signature/Name			
SECTINGUISHED BY: [SIgnatu	John	RC	i	/. (*	14	130_	_ _d_	bnni	Bostow					Ц)	n	Ø	X.	Īμ	L_{\perp}			12	12/11M 23/	130 16	X g	WB.	50/	7	\exists
IEUNOÚISHED BY: ISIGOIRÍU	e/Namej				OATE/	IIME	RECEN	VED BY; ĮSI <u>č</u>	granure/Name)				REL	JONI.	JISI IEI) BY;	(Signa	iture/i	Vaane	:)			DA	TE/TIM	E	RECEIVED BY	: (Signature/Name	1 /		
SAMPLES SHIPPED VIA:	UPS [· · · ·	AID	70P	 !E 🗀		SHIPPE	ED BY: (Sign	ature/Name)				1 /		:: Isior			(2)	\ \ \	2			REC	EIVED	FOR E	SY Parofacusety de	ne)	ļ	Jes (C	76
HAND AIRFRE		-					AIRBILI	L#:					1) Q	الي	, 'ke	`	0					LA	B:	4	(E)			203 O	- 1

RECEIVED

JAN 1 4 1997

January 07, 1997

ENVIRONMENTAL AUDIT

Ed Leonhardt Environmental Audit, Inc. 1000-A Ortega Way Placentia, CA 92670-7125

Subject:

Calscience Work Order Number:

Client Reference:

96-12-397

Kekropia, Inc./1576

Dear Client:

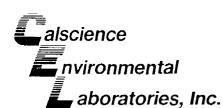
Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 12/23/96 and analyzed in accordance with the attached chain-of-custody.

The results in this analytical report are limited to the samples tested, and any reproduction of this report must be made in its entirety.

If you have any questions regarding this report, require sampling supplies or field services, or information on our analytical services, please feel free to call me at (714) 895-5494.

Sincerely,

Calscience Environmental


Laboratories, Inc.

William H. Christensen

Deliverables Manager

Steven L. Lane Laboratory Director

7440 Lincoln Way, Garden Grove, CA 92841-1432 • TEL: (714) 895-5494 • FAX: (714) 894-7501

100

100

100

ANALYTICAL REPORT

Environmental Audit, Inc. Date Sampled: 12/23/96 1000-A Ortega Way Date Received: 12/23/96 Placentia, CA 92670-7125 Date Extracted: 01/06/97 Date Analyzed: 01/06/97 Work Order No.: 96-12-397 Method: EPA 8015M with Carbon Chain Attn: Ed Leonhardt Page 1 of 2

RE: Kekropia, Inc./1576

All concentrations are reported in mg/kg (ppm).

<u>Analyte</u>	Concentration	Reportable <u>Limit</u>
Sample Number: SS-4		
C7	ND	100
C8	ND	100
C9-C10	ND	100
C11-C12	ND	100
C13-C14	ND ,	100
C15-C16	103	100
C17-C18	640	100
C19-C20	1400	100
C21-C22	2190	100
C23-C24	861	100

1680

1240

190

C25-C28

C29-C32

C33-C36

Environmental Audit, Inc.	Date Sampled: 12/23/96
1000-A Ortega Way	Date Received: 12/23/96
Placentia, CA 92670-7125	Date Extracted: 01/06/97
	Date Analyzed: 01/06/97
	Work Order No.: 96-12-397
Attn: Ed Leonhardt	Method: EPA 8015M with Carbon Chain
RE: Kekropia, Inc./1576	Page 2 of 2

All concentrations are reported in mg/kg (ppm).

Analyte	Concentration	Reportable <u>Limit</u>
Sample Number: Method Blank		
C7	ND	10
C8	ND	10
C9-C10	ND	10
C11-C12	ND	10
C13-C14	ND	10
C15-C16	ND	10
C17-C18	ND	10
C19-C20	ND	10
C21-C22	ND	10
C23-C24	ND	10
C25-C28	ND	10
C29-C32	ND	10
C33-C36	ND	10

ND denotes not detected at indicated reportable limit.

Each sample was received by CEL chilled, intact, and with chain-of-custody attached.

QUALITY ASSURANCE SUMMARY

Method EPA 8015M with Carbon Chain

Environmental Audit, Inc.

Work Order No.:

96-12-397

Page 1 of 1

Analyte

Date Analyzed:

01/04/97

Matrix Spike/Matrix Spike Duplicate

Sample Spiked: 96-12-464-8

MS%RECMSD%RECControlControlLimits%RPDLimits

Total Petroleum Hydrocarbons 104 99 55 - 135 5 0 - 30

January 22, 1997

Ed Leonhardt Environmental Audit, Inc. 1000-A Ortega Way Placentia, CA 92670-7125 PECEIVED

JAN 2 4 1997

ENVIRONMENTAL AUDIT

Subject:

Calscience Work Order Number:

Client Reference:

97-01-104

Burke St./1576

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 01/13/97 and analyzed in accordance with the attached chain-of-custody.

The results in this analytical report are limited to the samples tested, and any reproduction of this report must be made in its entirety.

If you have any questions regarding this report, require sampling supplies or field services, or information on our analytical services, please feel free to call me at (714) 895-5494.

Sincerely,

Calscience Environmental Laboratories, Inc.

William H. Christensen

Deliverables Manager

Steven L. Lane '

Laboratory Director

Environmental Audit, Inc.	Date Sampled:	01/13/97
1000-A Ortega Way	Date Received:	01/13/97
Placentia, CA 92670-7125	Date Digested:	01/15/97
	Date Analyzed:	01/15-18/97
	Work Order No.:	97-01-104

Attn: Ed Leonhardt

RE: Burke St./1576 Page 1 of 7

All concentrations are reported in mg/L (ppm). Analyses for Title 22 metals were conducted on a total digestion.

Sample Number: MW-2

			Reportable
<u>Analyte</u>	<u>Method</u>	Concentration	<u>Limit</u>
Antimony	EPA 200.7	ND	0.1
Arsenic	EPA 200.7	ND	0.1
Barium	EPA 200.7	0.44	0.02
Beryllium	EPA 200.7	ND	0.01
Cadmium	EPA 200.7	ND	0.02
Chromium	EPA 200.7	0.09	0.03
Cobalt	EPA 200.7	0.04	0.03
Copper	EPA 200.7	0.08	0.05
Lead	EPA 200.7	ND	0.12
Mercury	EPA 245.1	ND	0.0005
Molybdenum	EPA 200.7	ND	0.05
Nickel	EPA 200.7	0.05	0.04
Selenium	EPA 200.7	ND	0.1
Silver	EPA 200.7	ND	0.02
Thallium	EPA 200.7	ND	0.16
Vanadium	EPA 200.7	0.14	0.03
Zinc	EPA 200.7	0.19	0.03

		
Environmental Audit, Inc.	Date Sampled:	01/13/97
1000-A Ortega Way	Date Received:	01/13/97
Placentia, CA 92670-7125	Date Digested:	01/15/97
	Date Analyzed:	01/15-20/97
	Work Order No.:	97-01-104

Attn: Ed Leonhardt

RE: Burke St./1576 Page 2 of 7

All concentrations are reported in mg/L (ppm). Analyses for Title 22 metals were conducted on a total digestion.

Sample Number: MW-1

			Reportable
<u>Analyte</u>	<u>Method</u>	<u>Concentration</u>	<u>Limit</u>
Antimony	EPA 200.7	ND	0.1
Arsenic	EPA 200.7	ND	0.1
Barium	EPA 200.7	0.52	0.02
Beryllium	EPA 200.7	ND	0.01
Cadmium	EPA 200.7	ND	0.02
Chromium	EPA 200.7	0.08	0.03
Cobalt	EPA 200.7	ND	0.03
Copper	EPA 200.7	0.07	0.05
Lead	EPA 200.7	. ND	0.12
Mercury	EPA 245.1	ND	0.0005
Molybdenum	EPA 200.7	ND	0.05
Nickel	EPA 200.7	ND	0.04
Selenium	EPA 200.7	ND	0.1
Silver	EPA 200.7	ND	0.02
Thallium	EPA 200.7	ND	0.16
Vanadium	EPA 200.7	0.13	0.03
Zinc	EPA 200.7	0.15	0.03

Environmental Audit, Inc.	Date Sampled:	01/13/97
1000-A Ortega Way	Date Received:	01/13/97
Placentia, CA 92670-7125	Date Digested:	01/15/97
	Date Analyzed:	01/15-20/97
	Work Order No.:	97-01-104

Attn: Ed Leonhardt

RE: Burke St./1576 Page 3 of 7

All concentrations are reported in mg/L (ppm). Analyses for Title 22 metals were conducted on a filtered sample.

Sample Number: MW-2 (Filtered)

•	,		Reportable
<u>Analyte</u>	<u>Method</u>	<u>Concentration</u>	<u>Limit</u>
A 41	EDA 000.7	ND	0.4
Antimony	EPA 200.7	ND	0.1
Arsenic	EPA 200.7	ND	0.1
Barium	EPA 200.7	ND	0.02
Beryllium	EPA 200.7	ND	0.01
Cadmium	EPA 200.7	ND	0.02
Chromium	EPA 200.7	ND	0.03
Cobalt	EPA 200.7	ND	0.03
Copper	EPA 200.7	ND	0.05
Lead	EPA 200.7	ND	0.12
Mercury	EPA 245.1	ND	0.0005
Molybdenum	EPA 200.7	ND	0.05
Nickel	EPA 200.7	ND	0.04
Selenium	EPA 200.7	ND	0.1
Silver	EPA 200.7	DN	0.02
Thallium	EPA 200.7	ND	0.16
Vanadium	EPA 200.7	ND	0.03
Zinc	EPA 200.7	ND	0.03

Environmental Audit, Inc.	Date Sampled:	01/13/97
1000-A Ortega Way	Date Received:	01/13/97
Placentia, CA 92670-7125	Date Digested:	01/15/97
	Date Analyzed:	01/15-20/97
	Work Order No.:	97-01-104
Attn: Ed Loophardt		

Attn: Ed Leonhardt

RE: Burke St./1576 Page 4 of 7

All concentrations are reported in mg/L (ppm). Analyses for Title 22 metals were conducted on a filtered sample.

Sample Number: MW-1 (Filtered)

			Reportable
<u>Analyte</u>	<u>Method</u>	<u>Concentration</u>	<u>Limit</u>
Antimony	EPA 200.7	ND	0.1
Arsenic	EPA 200.7	ND	0.1
Barium	EPA 200.7	ND	0.02
Beryllium	EPA 200.7	ND	0.01
Cadmium	EPA 200.7	ND	0.02
Chromium	EPA 200.7	ND	0.03
Cobalt	EPA 200.7	ND	0.03
Copper	EPA 200.7	ND	0.05
Lead	EPA 200.7	ND	0.12
Mercury	EPA 245.1	ND	0.0005
Molybdenum	EPA 200.7	ND	0.05
Nickel	EPA 200.7	ND	0.04
Selenium	EPA 200.7	ND	0.1
Silver	EPA 200.7	ND	0.02
Thallium	EPA 200.7	ND	0.16
Vanadium	EPA 200.7	ND	0.03
Zinc	EPA 200.7	ND	0.03

Environmental Audit, Inc.	Date Sampled:	01/13/97
1000-A Ortega Way	Date Received:	01/13/97
Placentia, CA 92670-7125	Date Digested:	01/15/97
	Date Analyzed:	01/15-18/97
	Work Order No.:	97-01-104

Attn: Ed Leonhardt

RE: Burke St./1576 Page 5 of 7

All concentrations are reported in mg/L (ppm). Analyses for Title 22 metals were conducted on a total digestion.

Sample Number: Method Blank

			Reportable
<u>Analyte</u>	<u>Method</u>	Concentration	<u>Limit</u>
Antimony	EPA 200.7	ND	0.1
Arsenic	EPA 200.7	ND	0.1
Barium	EPA 200.7	ND	0.02
Beryllium	EPA 200.7	ND	0.01
Cadmium	EPA 200.7	ND	0.02
Chromium	EPA 200.7	ND	0.03
Cobalt	EPA 200.7	ND	0.03
Copper	EPA 200.7	ND	0.05
Lead	EPA 200.7	ND	0.12
Mercury	EPA 245.1	ND	0.0005
Molybdenum	EPA 200.7	ND	0.05
Nickel	EPA 200.7	ND	0.04
Selenium	EPA 200.7	ND	0.1
Silver	EPA 200.7	ND	0.02
Thallium	EPA 200.7	ND	0.16
Vanadium	EPA 200.7	ND	0.03
Zinc	EPA 200.7	ND	0.03

Environmental A	udit, Inc.		Date Sam	npled:	01/13/97			
1000-A Ortega V	Vay		Date Rec	eived:	01/13/97			
Placentia, CA 92	2670-7125		Date Dige	01/15/97				
			Date Ana	lyzed:	01/15-18/97			
			Work Ord	er No.:	97-01-104			
Attn: Ed Leonha RE: Burke St./		Page 6 of	f 7					
All concentration conducted on a	ns are reported in total digestion.	mg/L (ppm).	Analyses f	or Title 22	metals were			
QA/QC								
		Conc.	Conc.		Control			
<u>Analyte</u>	<u>Method</u>	<u>Added</u>	Rec.	<u>%REC</u>	Limits (%)			
Sample Numbe	r: Laboratory Co	ntrol Sample						
Silver	EPA 200.7	0.50	0.55	110	80 - 120			
		Sample	Duplicate		Control			
<u>Analyte</u>	<u>Method</u>	Conc.	Conc.	<u>%RPD</u>	Limits (%)			
Sample Numbe	r: MW-2 (Duplica	te)						
Antimony	EPA 200.7	ND	ND	NA	0 - 20			
Arsenic	EPA 200.7	ND	ND	NA	0 - 20			
Barium	EPA 200.7	0.44	0.43	2	0 - 20			
Beryllium	EPA 200.7	ND	ND	NA	0 - 20			
Cadmium	EPA 200.7	ND	ND	NA	0 - 20			
Chromium	EPA 200.7	0.09	0.09	0	0 - 20			
Cobalt	EPA 200.7	0.04	0.04	0	0 - 20			
Copper	EPA 200.7	0.08	0.07	13	0 - 20			
Lead	EPA 200.7	ND	ND	NA	0 - 20			
Molybdenum	EPA 200.7	ND	ND	NA	0 - 20			
Nickel	EPA 200.7	0.05	0.04	22*	0 - 20			
Selenium	EPA 200.7	ND	ND	NA	0 - 20			
Silver	EPA 200.7	ND	ND	NA	0 - 20			
Thallium	EPA 200.7	ND	ND	NA	0 - 20			
Vanadium	EPA 200.7	0.14	0.14	0	0 - 20			
Zinc	EPA 200.7	0.19	0.19	0	0 - 20			

Environmental Audit, Inc.

Date Sampled:

01/13/97

1000-A Ortega Way

Date Received:

01/13/97

Placentia, CA 92670-7125

Date Digested:

01/15-18/97

Work Order No.:

97-01-104

Attn: Ed Leonhardt

RE: Burke St./1576 Page 7 of 7

All concentrations are reported in mg/L (ppm).

QA/QC

Analyte	<u>Method</u>	Sample <u>Conc.</u>	Duplicate Conc.	%RPD	Control <u>Limits (%)</u>
Sample Number:	MW-1 (Duplica	te)			
Mercury	EPA 245.1	ND	ND	NA	0 - 20

ND denotes not detected at indicated reportable limit.

Each sample was received by CEL chilled, intact, and with chain-of-custody attached.

^{*}Out of range due to low concentration.

Environmental Audit, Inc. Date Sampled: 01/13/97 1000-A Ortega Way Date Received: 01/13/97 Placentia, CA 92670-7125 Date Extracted: Р/Т Date Analyzed: 01/16/97 Work Order No.: 97-01-104 Attn: Ed Leonhardt Method: EPA 524.2

RE: Burke St./1576 Page 1 of 2

Report for sample number MW-2. All concentrations are reported in $\mu g/L$ (ppb). ND denotes not detected at indicated reportable limit. DF and RL denote dilution factor and reporting limit, respectively. Each sample was received in a chilled state, intact, and with chain-of-custody attached.

min on the total of the time of time of the time of time of the time of the time of time o									
Analyte	Blank	Sample	RL	DF	Analyte	Blank	Sample	<u>RL</u>	<u>DF</u>
Dichlorodifluoromethane	ND	ND	0.5	1	2-Hexanone	ND	ND	0.5	1
Chloromethane	ND	ND	0.5	1	Toluene	ND	ND	0.5	1
Vinyl Chloride	ND	ND	0.5	1	t-1,3-Dichloropropene	ND	ND	0.5	1
Bromomethane	ND	ND	0.5	1	1,1,2-Trichloroethane	ND	ND	0.5	1
Chloroethane	ND	ND	0.5	1	Tetrachloroethene	ND	296	20	20
Iodomethane	ND	ND	0.5	1	1,3-Dichloropropane	ND	ND	0.5	1
Trichlorofluoromethane	ND	ND	0.5	1	Dibromochloromethane	ND	ND	0.5	- 1
Acetone	ND	ND	2.0	1	1,2-Dibromoethane	ND	ND	0.5	1
1,1-Dichloroethene	ND	33.2	0.5	1	Chlorobenzene	ND	ND	0.5	1
Methylene Chloride	ND	ND	0.5	1	1,1,1,2-Tetrachloroethane	ND	ND	0.5	1
Methyl-t-Butyl Ether	ND	ND	0.5	1	Ethylbenzene	ND	ND	0.5	1
t-1,2 Dichloroethene	ND	ND	0.5	1	m/p-Xylene	ND	ND	0.5	1
Carbon Disulfide	ND	ND	0.5	1	o-Xylene	ND	ND	0.5	1
Diethyl Ether	ND	ND	0.5	1	Styrene	ND	ND	0.5	1
1,1-Dichloroethane	ND	1.3	0.5	1	Bromoform	ND	ND	0.5	1
Methyl Acrylate	ND	ND	0.5	1	Isopropylbenzene	ND	ND	0.5	1
Chloroacetonitrile	ND	ND	0.5	1	Bromobenzene	ND	ND	0.5	1
2-Butanone	ND	ND	1.0	1	1,1,2,2-Tetrachloroethane	ND	ND	0.5	1
2,2-Dichloropropane	ND	ND	0.5	1	1,2,3-Trichloropropane	ND	ND	0.5	1
c-1,2-Dichloroethene	ND	ND	0.5	1	n-Propylbenzene	ND	ND	0.5	1
Bromochloromethane	ND	ND	0.5	1	2-Chlorotoluene	ND	ND	0.5	1
Chloroform	ND	1.5	0.5	1	4-Chlorotoluene	ND	ND	0.5	1
1,1,1-Trichloroethane	ND	7.9	0.5	1	1,3,5-Trimethylbenzene	ND	ND	0.5	1
1-Chlorobutane	ND	ND	0.5	1	t-Butylbenzene	ND	ND	0.5	1
Allyl Chloride	ND	ND	0.5	1	s-Butylbenzene	ND	ND	0.5	1
Methacrylonitrile	ND	ND	1.0	1	1,2,4-Trimethylbenzene	ND	ND	0.5	1
Methyl Methacrylate	ND	ND	0.5	1	4-Isopropyltoluene	ND	ND	0.5	1
Ethyl Methacrylate	ND	ND	0.5	1	1,3-Dichlorobenzene	ND	ND	0.5	1
Tetrahydrofuran	ND	ND	0.5	1	1,4-Dichlorobenzene	ND	ND	0.5	1
Propionitrile	ND	ND	1.0	1	n-Butylbenzene	ND	ND	0.5	1
Pentachloroethane	ND	ND	5.0	1	1.2-Dichlorobenzene	ND	ND	0.5	1
1,1-Dichloropropene	ND	ND	0.5	1	Hexachloroethane	ND	ND	0.5	1
Carbon Tetrachloride	ND	ND	0.5	1	1,2-Dibromo-3-Chloropropane	ND	ND	0.5	1
Benzene	ND	ND	0.5	1	Nitrobenzene	ND	ND	0.5	1
1,2-Dichloroethane	ND	ND	0.5	1	1,2,4-Trichlorobenzene	ND	ND	0.5	1
Trichloroethene	ND	14.5	0.5	1	Hexachloro-1,3-butadiene	ND	ND	0.5	1
1,2-Dichloropropane	ND	ND	0.5	1	Naphthalene	ND	ND	0.5	1
Dibromomethane	ND	ND	0.5	1	1,2,3-Trichlorobenzene	ND	ND	0.5	1
Bromodichloromethane	ND	ND	0.5	1	4-Methyl-2-Pentanone	ND	ND	0.5	1
2-Nitropropane	ND	ND	0.5	1	1,1-Dichloropropanone	ND	ND	0.5	1
c-1,3-Dichloropropene	ND	ND	0.5	1	t-1,4-Dichloro-2-Butene	ND	ND	0.5	1
					Acrylonitrile	ND	ND	2.0	1
					*				

Environmental Audit, Inc. Date Sampled: 01/13/97 1000-A Ortega Way Date Received: 01/13/97 Placentia, CA 92670-7125 Date Extracted: Р/Т Date Analyzed: 01/17/97 Work Order No.: 97-01-104 Attn: Ed Leonhardt Method: EPA 524.2 RE: Burke St./1576 Page 2 of 2

Report for sample number MW-1. All concentrations are reported in μ g/L (ppb). ND denotes not detected at indicated reportable limit. DF and RL denote dilution factor and reporting limit, respectively. Each sample was received in a chilled state, intact, and with chain-of-custody attached.

<u>Analyte</u>	Blank	Sample	<u>RL</u>	<u>DF</u>	Analyte	Blank	<u>Sample</u>	<u>RL</u>	DF
Dichlorodifluoromethane	ND	ND	0.5	1	2-Hexanone	ND	ND	0.5	1
Chloromethane	ND	ND	0.5	1	Toluene	ND	1.9	0.5	1
Vinyl Chloride	ND	ND	0.5	1	t-1,3-Dichloropropene	ND	ND	0.5	1
Bromomethane	ND	ND	0.5	1	1,1,2-Trichloroethane	ND	ND	0.5	1
Chloroethane	ND	ND	0.5	1	Tetrachloroethene	ND	93	8	8
lodomethane	ND	ND	0.5	1	1,3-Dichloropropane	ND	ND	0.5	1
Trichlorofluoromethane	ND	ND	0.5	1	Dibromochloromethane	ND	ND	0.5	1
Acetone	ND	ND	2.0	1	1,2-Dibromoethane	ND	ND	0.5	1
1,1-Dichloroethene	ND	4.3	0.5	1	Chlorobenzene	ND	ND	0.5	1
Methylene Chloride	ND	ND	0.5	1	1,1,1,2-Tetrachloroethane	ND	ND	0.5	1
Methyl-t-Butyl Ether	ND	ND	0.5	1	Ethylbenzene	ND	ND	0.5	1
t-1,2 Dichloroethene	ND	ND	0.5	1	m/p-Xylene	ND	1.6	0.5	1
Carbon Disulfide	ND	ND	0.5	1	o-Xylene	ND	1.1	0.5	1
Diethyl Ether	ND	ND	0.5	1	Styrene	ND	ND	0.5	1
1,1-Dichloroethane	ND	ND	0.5	1	Bromoform	ND	ND	0.5	1
Methyl Acrylate	ND	ND	0.5	1	Isopropylbenzene	ND	ND	0.5	1
Chloroacetonitrile	ND	ND	0.5	1	Bromobenzene	ND	ND	0.5	1
2-Butanone	ND	ND	1.0	1	1,1,2,2-Tetrachloroethane	ND	ND	0.5	1
2,2-Dichloropropane	ND	ND	0.5	1	1,2,3-Trichloropropane	ND	ND	0.5	1
c-1,2-Dichloroethene	ND	ND	0.5	1	n-Propylbenzene	ND	ND	0.5	1
Bromochloromethane	ND	ND	0.5	1	2-Chlorotoluene	ND	ND	0.5	1
Chloroform	ND	4.5	0.5	1	4-Chlorotoluene	ND	ND	0.5	1
1,1,1-Trichloroethane	ND	1.3	0.5	1	1,3,5-Trimethylbenzene	ND	ND	0.5	1
1-Chlorobutane	ND	ND	0.5	1	t-Butylbenzene	ND	ND	0.5	1
Allyl Chioride	ND	ND	0.5	1	s-Butylbenzene	ND	ND	0.5	1
Methacrylonitrile	ND	ND	1.0	1	1,2,4-Trimethylbenzene	ND	ND	0.5	1
Methyl Methacrylate	ND	ND	0.5	1	4-Isopropyltoluene	ND	ND	0.5	1
Ethyl Methacrylate	ND	ND	0.5	1	1,3-Dichlorobenzene	ND	ND	0.5	1
Tetrahydrofuran	ND	ND	0.5	1	1,4-Dichlorobenzene	ND	ND	0.5	1
Propionitrile	ND	ND	1.0	1	n-Butylbenzene	ND	ND	0.5	1
Pentachloroethane	ND	ND	5.0	1	1,2-Dichlorobenzene	ND	ND	0.5	1
1,1-Dichloropropene	ND	ND	0.5	1	Hexachloroethane	ND	ND	0.5	1
Carbon Tetrachloride	ND	1.1	0.5	1	1,2-Dibromo-3-Chloropropane	ND	ND	0.5	1
Benzene	ND	ND	0.5	1	Nitrobenzene	ND	ND	0.5	1
1,2-Dichloroethane	ND	0.5	0.5	1	1,2,4-Trichlorobenzene	ND	ND	0.5	1
Trichloroethene	ND	11.4	0.5	1	Hexachioro-1,3-butadiene	ND	ND	0.5	1
1,2-Dichloropropane	ND	ND	0.5	1	Naphthalene	ND	ND	0.5	1
Dibromomethane	ND	ND	0.5	1	1,2,3-Trichlorobenzene	ND	ND	0.5	1
Bromodichloromethane	ПN	ND	0.5	1	4-Methyl-2-Pentanone	ND	ND	0.5	1
2-Nitropropane	ND	ND	0.5	1	1,1-Dichloropropanone	ND	ND	0.5	1
c-1,3-Dichloropropene	ND	ND	0.5	1	t-1,4-Dichloro-2-Butene	ND	ND	0.5	1
•					Acrylonitrile	ND	ND	2.0	1

Control

QUALITY ASSURANCE SUMMARY

ICP / GF Metals (Aqueous)

Environmental Audit, Inc. Work Order No.: 97-01-104
Page 1 of 1 Date Analyzed: 01/15-18/97

MS

Matrix Spike

Sample Spiked: MW-2
Sample Spike
Analyte Method Conc. Added

<u>Analyte</u>	<u>Method</u>	Conc.	<u>Added</u>	Conc.	%REC	Limits
Antimony	EPA 200.7	ND	1.00	0.99	99	80 - 120
Arsenic	EPA 200.7	ND	1.00	1.09	109	80 - 120
Barium	EPA 200.7	0.44	1.00	1.45	101	80 - 120
Beryllium	EPA 200.7	ND	1.00	1.02	102	80 - 120
Cadmium	EPA 200.7	ND	1.00	0.99	99	80 - 120
Chromium	EPA 200.7	0.09	1.00	1.11	102	80 - 120
Cobalt	EPA 200.7	0.04	1.00	1.05	101	80 - 120
Copper	EPA 200.7	0.08	1.00	1.10	102	80 - 120
Lead	EPA 200.7	ND	1.00	1.01	101	80 - 120
Molybdenum	EPA 200.7	ND	1.00	0.99	99	80 - 120
Nickel	EPA 200.7	0.05	1.00	1.08	103	80 - 120
Selenium	EPA 200.7	ND	1.00	0.99	99	80 - 120
Silver	EPA 200.7	ND	0.50	0.20	40 Note 1	80 - 120
Thallium	EPA 200.7	ND	1.00	0.85	85	80 - 120
Vanadium	EPA 200.7	0.14	1.00	1.17	103	80 - 120
Zinc	EPA 200.7	0.19	1.00	1.20	101	80 - 120

Matrix Spike

Sample Spiked: MW-1

Analyte	Method	Sample <u>Conc.</u>	Spike <u>Added</u>	MS <u>Conc.</u>	%REC	Control <u>Limits</u>
Mercury	EPA 245.1	ND	0.0050	0.0049	98	50 - 130

^{1.} The MS associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS was in control and, hence, the associated sample data was reported with no further corrective action required.

QUALITY ASSURANCE SUMMARY

Method EPA 524.2

Environmental Audit, Inc.

Work Order No.:

97-01-104

Page 1 of 1

Date Analyzed:

01/17/97

LCS/LCS Duplicate

<u>Analyte</u>	LCS%REC	LCSD%REC	Control <u>Limits</u>	%RPD	Control <u>Limits</u>
Vinyl Chloride	117	118	80 - 120	0	0 - 20
1,1-Dichloroethene	114	112	80 - 120	1	0 - 20
Chloroform	101	96	80 - 120	5	0 - 20
Carbon Tetrachloride	97	98	80 - 120	1	0 - 20
Trichloroethene	97	96	80 - 120	1	0 - 20
1,2-Dichloropropane	88	89	80 - 120	1	0 - 20
Chlorobenzene	94	93	80 - 120	1	0 - 20
1,4-Dichlorobenzene	98	99	80 - 120	1	0 - 20

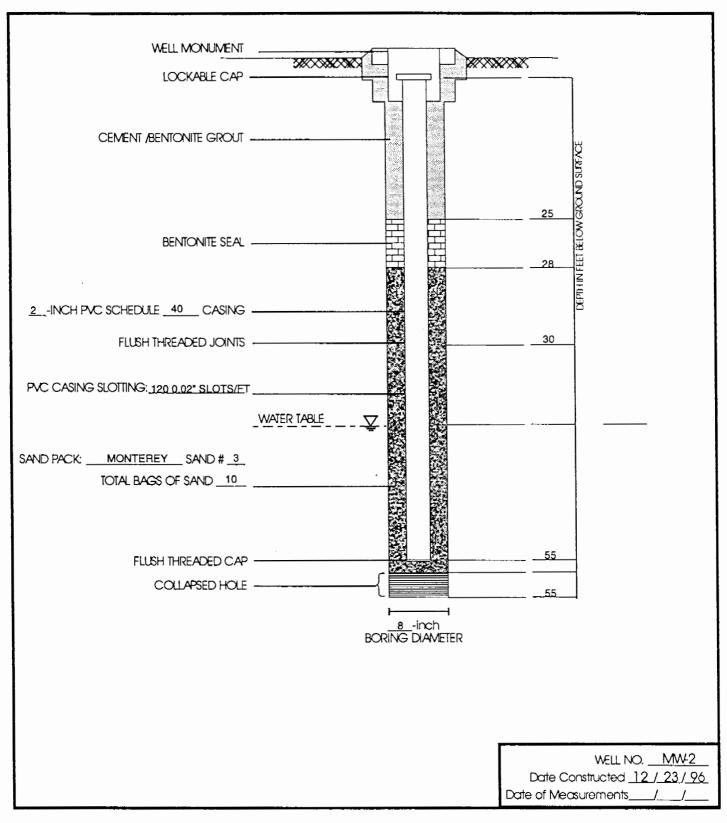
Surrogate Recoveries (in %)

Sample Number	<u>S1</u>	<u>S2</u>
MW-2	92	108
MW-1	107	111
Method Blank	96	111

Surrogate	Compound
	001110001110

%REC Acceptable Limits

S1 > 1,4-Bromofluorobenzene S2 > 1,2-Dichlorobenzene-d₄


70 - 120

70 - 120

FA				ONME						R)		(Ch	ıc	iir	1	of	f (Cı	JS	stody	y R∈	ecc	ord	
		Plar	ining Sub	g, Environr stances Mar	nental Ana Iagement ar	tyses and I id Remedi	-laz atio	ard m	0115			27	MPLI	NG R	EOL	IIREN	/EN	TS:	RCF	24 🗆	N	NPDES 🗀	SDWA 🔲			
		1000	O OR	TEGA WAY, 1A, CA 926	SUITE A	☎ (714) (714)	632	- 8	352	1		R	וודטכ	N O(C (X)	PORT	r			OU!		71ME: 24hr 🗀	48hr 🗀) N	ORMAL 🗖	γ .
PROJECT NO. 1576			0-11	700 Bur E Springs			1 -	ONT PE	R	, — ·			VNVI	.YSES	REC	UES	_	1.5			ERS		REMAI	RKS		
SAMPLER (signature with Anand	b Printed N	Jaovej	<u> </u>	PRO	DJECT MANAGI Ed Leonh			701.17	15M	N510				EASE TALS TOT WET		10	Moth (1007	Gemk (2			OF CONTAINERS					
SAMPLE NUMBER	DATE	TIME	COMP	SAM	PLE DESCRIPTION	NC	GLASS	PLASTIC PPASS/SS	TPH-D 8	TPH-G 8(TRPH 418	B1EX 802	EOC 827	OIL & GREASE CAM METALS TO	LEAD	HVOC 8010	7.46 22	THE IT PEMA			NUMBER					
	1/13/97	/2:20) h	later		//														4					
MW-1	"	13:00			"		1	/													q					
					•													j								
	-																									
																To	OTAI		MRE	R	2					
RELINQUISHED BY: SIgnatu	helek	- ~		DATE/TIME 1/13/97 14:00	RECEIVED BY: [SIG	nature/Name)				RELA	NOUIS	VIED	BY: (SIG	nature	/Nam	<u>)</u>	<u>F CC</u>	L NUI	INER			RECEIVED BY:	(Signature/Na	me)		
REUNOUISHED BY: (Signatur	re/Name			DATE/UME	RECEIVED BY: [Sign	nature/Name)				RELIN	NOUIS	HED	8Y: (SIG	nature	/Narn	:)			DATE	TIME		RECEIVED BY:	Signattire/Na	meJ		
SAMPLES SHIPPED VIA: FEDEX	UPS 🔲		RBOR	VE []	SHIPPED BY: (Signa	ature/Name)				COU	RIER: (Signa	ture/Na	vnej					RECEI	VEDF	OR BY	r: [Signature/Rom	ie)		DATE/IMI	

1 1004 FO FAME

APPENDIX E: MONITORING WELL CONSTRUCTION DETAILS

EWIRONMENTAL AUDIT, INC.

MONITORING WELL CONSTRUCTION DETAIL

11700 Burke Street Santa Fe Spring, California 90670

Project No.1576

К:Л576Л576MW2.CDR

APPENDIX F: GROUND WATER SAMPLING LOGS

GROUND WATERSampling Log

F		1,
	Γ	\mathcal{A}

Environmental Audit, Inc.

Planning, Environmental Analyses and Hazardous Substances Management and Remediation

1000 ORTEGA WAY, SUITE A PLACENTIA, CA 92670-7125 ☎ (714) 632 - 8521 ™ (714) 632 - 6754

	_	_
DATE:	1-13-97	
PROJECT NO.:	1576	
CLIENT:	BURKE ST.	
WELL NO.:	MW-1	
WELL DIAMETER (INCHES):	2"	
SAMPLED BY:	AH.	

WELL PURGING INFORMATION

	WELL PURC	TING IN FOR	MALION		
ONE CASING VOLUME OF	WATER CALCULATED USING THE FOLI	WELL VOLUME FACTORS			
TOTAL DEPTH OF	DEPTH TO WATER	DEPTH TO FREE	WELL CASING ID (inches)	VOLUME FACTOR	
WELL (ft.)	LEVEL (ft. bgs)	PRODUCT (ft. bgs)	2.0	0.16	
53	- 38.33		4.0	0.65	
		·	6.0	1.47	
PURGE TIME (hrs.):	START 12:40	X WE			

OTHER 🔲

METHOD: DOWN HOLE PUMP

DEDICATED PUMP

BAILER

TYPE/MODEL:

CRUNOFOE

METHOD: DOWN HOLE PUMP

DEDICATED PUMP

BAILER

TYPE/MODEL:

	GALLONS PURGED	TEMP (°F)	CONDUCTIVITY (Micro-ohms/cm) x 103	рН	TURBIDITY (NTU)	REMARKS
	3	63-9	1.07 x 103	8.61	7200	PARCED 5 GALLONS
-						
-						

WELL SAMPLING INFORMATION

TIME SAMPLED (hrs.):	12:00				
METHOD: DOWN HOLE PUMP	DEDICATED PUMP	BAILER 🔀	OTHER 🔲		
TYPE/MODEL :	VOSS TECHNO	10015	_1		
COMMENTS:				 	

GROUND WATERSampling Log

Environmental Audit, Inc.

Planning, Environmental Analyses and Hazardous Substances Management and Remediation

1000 ORTEGA WAY, SUITE A PLACENTIA, CA 92670-7125

窗 (714) 632 - 8521 国 (714) 632 - 6754

		_
DATE:	1-13-97	
PROJECT NO.:	1576	
CLIENT:	BURKE ST.	
WELL NO.:	MW-2	
WELL DIAMETER (INCHES):	2"	
SAMPLED BY:	AH.	

		NELL PURGIN	IGIN	FORA	WATIC	Ne		
ONE CASING VOLUME OF WATER CALCULATED USING THE FOLLOWING:					WELL VOLUME FACTORS			
TOTAL DEPTH OF WELL (ft.)				WELL CASIN	VOLUME FACTOR 0.16			
WELL (17.)	· · · · ·	32.14		231	4.0)	0.65	
					6.0		1.47	
		22.	.86	0.	.16	3.6	6	
			Х		L VOLUME UME FACTOR	= ONE CASI		
PURGE TIME (hrs.): ST.	TART 10:40	STOP [/2:/		YOLOME		
• .	. .		ם אוו ריי ריי				• •	
METHOD: DOWN TYPE/MODEL:	ו חטנג צטאצ 🔀		BAILER	OTHER (
	ra-mara	GRUNDFOR	MP				No.	
GALLONS PURGED	TEMP (°F)	CONDUCTIVITY (Micro-ohms/cm) x 10 ³	рН	TURBII (NTL		REMA	ARKS	
15		DEVELOJEO 15 CA	LONG			200 42		
15	68.6	1.60 X102	8.12	720	0			
18	66.7	1.58 X/03	7.65	720	0			
21	67.6	1.53 × 103	7.49	720	0 /	'decier 25	5 GALLONS	
		· ·						
					775(2.3			

TIME SAMPLED (hrs.):	12:20				
METHOD: DOWN HOLE PUMP	DEDICATED PUMP	BAILER \boxed	OTHER 🗀		
TYPE/MODEL :	VOSS TECHNO	LOCIES			
COMMENTS:				 	